

2019 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

June 2019

LAQM Annual Status Report 2019

Local Authority Officer	Stoke-on-Trent City Council
Department	Public Protection
Address	Hanley Town Hall Albion Street Stoke-on-Trent ST1 1QL
Telephone	01782 236575
E-mail	ann.beeston@stoke.gov.uk
Report Reference number	SoTASR2019
Date	June 2019

REPORT SIGN OFF SHEET

Report Title	2019 Air Quality Annual Status Report
Prepared by	Public Protection
Endorsement	Monitoring and managing air quality remains a priority for Stoke-on- Trent City Council. Identifying problem areas and ensuring that actions are taken to improve air quality forms an important element in protecting the health and wellbeing of our residents and we are committed to an ongoing programme to deliver improvements where they are needed.
Approved for submission to Defra by	Signature: Jacquie Ashdown Assistant Director of Wellbeing & Director of Public Health Stoke-on-Trent City Council
	Date: 02/07/19

Executive Summary: Air Quality in Our Area Air Quality in Stoke-on-Trent

Poor air quality is associated with a number of adverse health impacts and the largest environmental risk to public health in the UK . It is recognised as a contributing factor in the onset of heart disease and cancer particularly affecting the most vulnerable in society: children and older people, and those with pre-existing heart and lung conditions. There is also often a strong correlation with other equalities issues, with areas with poor air quality often the less affluent areas^{1,2}.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion 3 .

The main pollutant of concern in Stoke-on-Trent is nitrogen dioxide (NO₂). High concentrations of NO₂ are associated with busy, congested roads. In 2018, we monitored NO₂ at 72 locations throughout the city. Most of the monitoring locations were at, or close to, residential properties next to busy roads and road junctions. Where monitoring has been undertaken for five years or more, our graphed data continues to show a downward trend in concentrations of NO₂ in all areas. However, concentrations in the Etruria area remain high, especially where the A53 (Etruria Road) enters a steep-sided cutting with trees that form a canopy over the road, which together may inhibit dispersal of pollutants.

The current Stoke-on-Trent Air Quality Management Area (AQMA) covers the whole of the city. A copy of the AQMA order can be found online <u>here</u>.

Progress on reviewing and updating our Air Quality Action Plan (AQAP), which was highlighted in our previous report, has been delayed as resources have been diverted towards complying with the legal requirement of Ministerial Directions issued jointly to Stoke-on-Trent City Council and Newcastle-under-Lyme Borough Council. The latest Direction requires the authorities to produce a Third Wave Local Plan to identify actions that would bring forward compliance with the NO₂ EU limit value in the shortest possible time on a section of the A53.

¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010

 $^{^{2}}$ Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013

Defra's Pollution Climate Mapping (PCM) model showed an exceedance of the NO₂ EU limit value in this area and a first Ministerial Direction was issued to Stoke and Newcastle Councils. Local monitoring in accordance with the Direction indicated that the non-compliant area involved more locations than identified by the PCM model leading to a second Direction. The original area of non-compliance at the A53 was between the A500/Etruria Road roundabout and Festival Park roundabout. This section of the road has no residential properties close to the road and so the UK Air Quality Objective (UK AQO) is not applicable and therefore not exceeded at this location. The first Ministerial Direction was complied with and a Feasibility Report was submitted to Defra by the deadline date of 31 July 2018.

The work being undertaken to comply with the current Ministerial Direction requires Stoke and Newcastle-u-Lyme local authorities to consider areas both within and outside of the PCM non-compliant area. Therefore, all exceedances of the UK NO₂ objective and EU NO₂ non-compliance are being considered in the Third Wave Local Plan.

We are continuing to work towards improving air quality and ensuring that residents are not subject to additional pollution sources by liaising with colleagues within the planning and highways departments of the council and with neighbouring authorities. An important continuing action is to review and comment on planning applications with regard to air quality, alerting planners if we have any concerns that a development may result in air quality which may be harmful to health.

Actions to Improve Air Quality

The review of our current action plan has been slower than anticipated for the reasons stated above and regrettably we have been unable to make the forecast progress on this since the 2018 ASR. However, the work we have done and continue to do to comply with Ministerial Directions will identify further actions to improve air quality across the City and will be documented in a Third Wave Local Plan. That Plan will initially then sit alongside our existing AQAP, and we will subsequently consider the benefits of combining the two plans for ease of reference.

Actions to improve Air Quality cannot be achieved in isolation and other Council plans, projects and strategies contribute directly or indirectly. Hence our specialist air quality officers work closely with colleagues in public health, planning, transport, and

economic development to ensure air quality is linked into their work and strategies. Of note currently is work on the <u>Councils Green Space strategy</u>; funding bids for <u>Transforming Cities</u>, and <u>Taxi and Private Hire Electric Vehicle charging</u> Infrastructure.

Similarly public and community support is necessary to translate action plans into positive outcomes and examples of how we engage to achieve this are highlighted below.

Conclusions and Priorities

The AQMA encompasses the whole of the city, therefore, all exceedances of the NO₂ objective in 2018 have occurred within the AQMA. There are currently no planned changes to the AQMA boundary.

Our air quality priority for 2019/20 is to complete the Third Wave Local Plan to comply with the Ministerial Direction and identify measures to reduce air pollution. However, the timescale for producing the report is very challenging. It is anticipated that following acceptance of the Third Wave Local Plan, a further Ministerial Direction will be issued requiring Stoke-on-Trent City Council to implement the agreed actions to bring forward compliance in the shortest possible time. Ongoing monitoring and reviewing of compliance with the EU NO₂ limit value will be required

Local Engagement and How to get Involved

We can all help to improve air quality. Further information is available on <u>The Clean</u> <u>Air Hub</u>. In addition to air quality, some of the actions that we take can also help to improve physical and mental wellbeing:

- avoid using the car, especially for short journeys walk instead, new signposting in the City gives information on distances and route finding.
- encourage people to walk check out our local parks
- encourage increased use of cycle-trails (lanes) check out local cycling trails.
- promote the use of public transport such as buses see the council's <u>travel</u> page
- promote the availability of lift sharing see <u>Staffordshire Share-a-lift</u>

Comments from representatives of community groups or residents associations in the hot-spot areas are always welcome and are encouraged to take part in our consultation exercises, by contacting:

Public Protection

Stoke-on-Trent City Council

Albion Street

Stoke-on-Trent

ST1 1QL

public.protection@stoke.gov.uk

Table of Contents

Executive Summary: Air Quality in Our Area	i
Air Quality in Stoke-on-Trent	.i
Actions to Improve Air Quality	ii
Conclusions and Prioritiesi	iii
Local Engagement and How to get Involvedi	iii
1 Local Air Quality Management	1
2 Actions to Improve Air Quality	2
2.1 Air Quality Management Areas	2
2.2 Progress and Impact of Measures to address Air Quality in Stoke-on Trent	4
2.3 PM _{2.5} – Local Authority Approach to Reducing Emissions and/or	
Concentrations1	3
2.3.1 Particulate Matter (PM2.5) Levels in Stoke-on-Trent and Staffordshire	4
2.3.2 PM _{2.5} and Mortality in Staffordshire & Stoke-on-Trent	
2.3.3 Actions being taken within Staffordshire to reduce PM _{2.5}	7
3 Air Quality Monitoring Data and Comparison with Air Quality	
Objectives and National Compliance	6
3.1 Summary of Monitoring Undertaken2	6
3.1.1 Automatic Monitoring Sites	6
3.1.2 Non-Automatic Monitoring Sites	6
3.2 Individual Pollutants2	7
3.2.1 Nitrogen Dioxide (NO ₂)	7
3.2.2 Particulate Matter (PM ₁₀)	
3.2.3 Particulate Matter (PM _{2.5})	
Appendix A: Monitoring Results	9
Appendix B: Full Monthly Diffusion Tube Results for 2018	8
Appendix C: Supporting Technical Information / Air Quality Monitoring	
Data QA/QC	2
C1 Changes to sources7	2
C2 Monitoring/Modelling conclusions7	6
C3 QA/QC	6
Appendix D: Map(s) of Monitoring Locations and AQMAs	6
Appendix E: Summary of Air Quality Objectives in England	3
Glossary of Terms	4

List of Tables

Table 2.1 – Declared Air Quality Management Areas Table 2.2 – Progress on Measures to Improve Air Quality	
Table 2.3 1 Annual Mean PM ₁₀ and PM _{2.5} results of monitoring by Staffordshire Authorities 2014 to 2018	.14
Table 2.3 2 Public Health Outcomes Framework Indicator 3.01- Fraction of annual cause adult mortality attributable to anthropogenic (human made)	
particulate air pollution (measured as fine particulate matter, PM2.5) for Staffordshire Authorities 2013 to 2017	
Table 2.3 3 Actions being taken within Staffordshire to reduce PM _{2.5}	.18
Table A.1 – Details of Automatic Monitoring Sites	.29
Table A.2 – Details of Non-Automatic Monitoring Sites	
Table A.3 – Annual Mean NO ₂ Monitoring Results	
Table A.4 – 1-Hour Mean NO_2 Monitoring Results	
Table A.5 – Annual Mean PM ₁₀ Monitoring Results	
Table A.6 – 24-Hour Mean PM ₁₀ Monitoring Results	
Table A.7 – PM _{2.5} Monitoring Results	
Table B.1 – NO ₂ Monthly Diffusion Tube Results - 2018	.68
Table E.1 – Air Quality Objectives in England1	123

List of Figures

Figure A.1 – Trends in Annual Mean NO ₂ Concentrations – background monitoring	
sites4	13
Figure A.2 – Trends in Annual Mean NO ₂ Concentrations – Leek Road, Milton4	4
Figure A. 3 – Graph of Annual Mean NO ₂ Concentrations – Newcastle Street4	-5
Figure A. 4 – Graph of Annual Mean NO ₂ Concentrations – Burslem Centre4	-6
Figure A. 5 – Graph of Annual Mean NO ₂ Concentrations – Cobridge4	
Figure A. 6 – Graph of Annual Mean NO ₂ Concentrations - Hanley4	-8
Figure A. 7 - Graph of Annual Mean NO ₂ Concentrations – Bucknall4	-9
Figure A. 8 - Graph of Annual Mean NO ₂ Concentrations – Leek Road, Joiners	
	50
Figure A. 9 - Graph of Annual Mean NO ₂ Concentrations – Station Road5	51
Figure A. 10 - Graph of Annual Mean NO ₂ Concentrations – College Road5	;2
Figure A. 11- Graph of Annual Mean NO ₂ Concentrations – A53 (Etruria Road)5	;3
Figure A. 12 - Graph of Annual Mean NO ₂ Concentrations – Victoria Street & Shelton	n
New Road5	55
Figure A. 13 - Graph of Annual Mean NO ₂ Concentrations – Hartshill Road5	6
Figure A. 14 - Graph of Annual Mean NO ₂ Concentrations – Victoria Road5	57
Figure A. 15 - Graph of Annual Mean NO ₂ Concentrations – north of A50 Meir5	58
Figure A. 16 - Graph of Annual Mean NO ₂ Concentrations – south of A50 Meir5	;9
Figure A. 17 - Graph of Annual Mean NO2 Concentrations – Uttoxeter Road, east of	
the Meir tunnel6	60
Figure A. 18 - Graph of Annual Mean NO ₂ Concentrations – Weston Road, Meir6	51
Figure A. 19 – Trends in Annual Mean PM ₁₀ Concentrations	64
Figure A. 20 – Trends in Annual Mean PM _{2.5} Concentrations	5 7

1 Local Air Quality Management

This report provides an overview of air quality in Stoke-on-Trent during 2018. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Stoke-on-Trent City Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of compliance with the objectives.

A summary of AQMAs declared by Stoke-on-Trent City Council can be found in the following Table 2.1.

Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at

https://www.stoke.gov.uk/directory_record/80/stoke-ontrent air quality management area order 2011

A full list of AQMAs is available at https://uk-air.defra.gov.uk/aqma/list.

Alternatively, see Appendix D: Map(s) of Monitoring Locations and AQMAs, which provides for a map of air quality monitoring locations in relation to the AQMA(s).

AQMA Name	Date of Declarati on	Pollutants and Air Quality Objectives	City / Town	One Line Description	Is air quality in the AQMA influenced by roads controlled	mo	Level of Exceedance (maximum monitored/modelled concentration at a location of relevant exposure)		Action Plan		Action Plan	
		Cajecaros			by Highways England?	At Declaration		Now		Name	Date of Publication	Link
Stoke-on- Trent Air Quality Management Area 2011	Declared 04/04/20 06	NO₂ Annual Meant	Stoke -on- Trent	An area encompassing the whole of the city	YES	52	µg/m³	73	µg ∕m ₃	Stoke- on-Trent City- wide Action Plan 2014	2014	<u>https://www.stoke.gov.uk/downloads/file/64/ci</u> ty_aqap_2014pdf
Stoke-on- Trent Air Quality Management Area 2011	Amended 09/05/11	NO₂ 1 Hour Mean	Stoke -on- Trent	An area encompassing the whole of the city	YES	52	µg/m3	73	μg /m 3	Stoke- on-Trent City- wide Action Plan 2014	2014	<u>https://www.stoke.gov.uk/downloads/file/64/ci</u> ty_aqap_2014pdf

Table 2.1 – Declared Air Quality Management Areas

Stoke-on-Trent City Council confirm the information on UK-Air regarding their AQMA(s) is up to date.

2.2 Progress and Impact of Measures to address Air Quality in Stoke-on Trent

Defra's appraisal of last year's ASR provided the following comments:

The report is well structured, detailed, and provides the information specified in the Guidance. The following comments are designed to help inform future reports.

1.Example calculations for data corrections have been provided within the report which are useful and encouraged for all future reports.

2. The Council plans to maintain their City wide AQMA status for the time being.

3. The report provides limited discussion of planning applications and local developments that may further impact future air quality. Future reports should provide appropriate discussion. For further guidance please refer to LAQM Technical Guidance 16 (TG16).

4. The report states a Feasibility Study for mitigation measures along the A53 was recently undertaken and completed for Defra. It would have been interesting for any such results or findings to be included within this report. However given the timing of the study deadline and the submission of this report it is recognised that there was limited opportunity to incorporate it. The Council may wish to include any major finding in next year's report, or if measures are implemented as a consequence of this study during the next reporting period, 2019 ASR should provide some level of discussion regarding this.

5.The Council provide very detailed discussion of PM2.5 issues, mitigation measures and the Public Health Outcomes Framework, in reference to neighbouring authorities. This is excellent and a similarly comprehensive section should be included in future reports.

6.NO₂ concentrations continue to exceed AQOs at many sites around the City. The Council have been successful in minor reductions over the last few years. However given the current levels of exceedance the Council has an enormous task to bear, and should dedicate appropriate resources to this challenge.

7. The AQAP is comprehensive and contains all required information, alongside updated discussion of progress and barriers. A number of measures (particularly traffic management measures) are expected to be completed during the next reporting period. 8.Generally the report is very well written and satisfies the criteria specified in relevant standards. However concerns around current NO₂ concentrations must be addressed as soon as possible.

To continue to address air quality concerns it was intended to review and update the existing AQAP as highlighted in our previous report. However this has been delayed as resources have been redirected towards complying with the legal requirement of Ministerial Directions issued jointly to Stoke-on-Trent City Council and Newcastle-under-Lyme Borough Council. The latest Direction requires the authorities to produce a Third Wave Local Plan to identify actions that would bring forward compliance with the NO₂ EU limit value in the shortest possible time on particular sections of the A53 main road and at other traffic hot-spots around the City.

In complying with the latest Direction a preferred option and business case for action is being developed for agreement with Government. This is scheduled to be submitted for consideration by 31 October 2019.

It is expected that the preferred actions identified to comply with the Ministerial Direction will also bring improvement to air quality in all areas of the City.

Table 2.2 highlights how continuing actions to address air pollution contained within the existing AQAP have continued the year on year trend of improving air quality in Stoke-on-Trent.

Measure No.	Measure	EU Category	EU Classifi cation	Organisation s involved and Funding Source	Planning Phase	Implementation Phase	Key Performance Indicator	Reduction in Pollutant / Emission from Measure	Progress to Date	Estimated / Actual Completion Date	Comments / Barriers to implementation
AQ10	Staffordshire ECO Stars Fleet Recognition Scheme	Vehicle Fleet Efficiency	Fleet efficienc y and recogniti on scheme s	Stoke-on- Trent CC, Newcastle- under-Lyme BC, Stafford BC, Staffordshire Moorlands BC, Cannock Chase DC, Lichfield DC, East Staffordhsire BC, South Staffordshire DC, Defra AQ Grant	2014	2015-16	Reduced emissions	Expected emission reduction 7 tonne NOx/yr, 2.22 tonne PM10/yr, 11615 tonne CO2/yr	Funding bid submitted	2017	Funding not availalbe to extend programme.
AQ8	Stoking Employment in North Staffordshire	Promoting Travel Alternatives	Workpla ce Travel Planning	Partnership with Staffordshire Council and NS Chamber of Commerce: Local Sustainable Transport Fund	2011/12	2012-15	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 17,750 kg/yr	PROGRAMME COMPLETED	2016	NA
AQ5a	Station Gateway (Phase 1), University Quarter (Phase 2) and Uni Boulevard (Phase 3)	Promoting Travel Alternatives	Promote use of rail and inland waterwa ys	LA lead and City Council Capital funding and Local Growth Deal funding	2014/15	Unknown	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 480 kg/yr	Proposals being assessed as part of the current City Centre Access Study	2017/18	Phase 1 completed 2012. Phase 2 being progressed.
AQ5b	Leek Road Traffic Management	Traffic Managemen t	UTC, Congesti on	LA lead and City Council Capital	2014/15	2015 - 2017	Improved journey times. Improved	Calculated Annual NOx Reductions 480	Proposals being assessed as part of the current City	2017/18	Phase 1 completed 2016. Phase 2 being

Table 2.2 – Progress on Measures to Improve Air Quality

	Improvements		manage ment, traffic reductio n	funding and Local Growth Deal funding			mode share of journey. Improved average congestion (miles/minute)	kg/yr	Centre Access Study		progressed.
AQ2	Cobridge Traffic Management Improvements (including Waterloo Road Corridor)	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio n	LA lead and funding source	2011/12	2012/13	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 389 kg/yr	Scheme completed	NA	NA
AQ4a	Lichfield Street Improvements	Transport Planning and Infrastructur e	Bus route improve ments	LA lead and funded: Local Transport Plan Capital Programme	2013/14	Unknown	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 322 kg/yr	Proposals being assessed as part of the current City Centre Access Study	Unknown	
AQ4b	Leek Road / Victoria Road Junction - Safety Scheme	Promoting Travel Alternatives	Promoti on of walking	LA lead and funding source	2013/15	Unknown		Calculated Annual NOx Reductions 321 kg/yr	Proposals being assessed as part of the current City Centre Access Study	Unknown	
AQ1	Burslem Town Centre Traffic Management Improvements	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio n	LA lead and funding source	2013/14	2014-2017	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 299 kg/yr	Preliminary design	Completion expected Spring 2018	Phases 1 & 2 complete. Phase 3 completion expected Spring 2018
AQ3	Victoria Road Corridor Improvements	Traffic Managemen t	Strategic highway improve ments, Re- prioritisi ng road space away from cars,	LA lead and funding source	2011/12	2012/13	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 297 kg/yr	Scheme completed	NA	NA

			including Access manage ment, Selectiv e vehicle priority, bus priority, high vehicle occupan cy lane								
AQ7a	Parking restrictions outside schools	Promoting Travel Alternatives	School Travel Plans	LA lead and funding source	2011/12	2012-14	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 272 kg/yr	Scheme completed	NA	NA
AQ7b	Walk to School Outreach– Living Streets	Promoting Travel Alternatives	School Travel Plans	Living Streets and local authority consortium: Local Sustainable Transport Fund	2011/12	2012-15	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 272 kg/yr	Programme in Delivery	Programme extended to 31/3/2020 through DfT Access Fund	
AQ7c	Access to Education - Sustrans	Promoting Travel Alternatives	School Travel Plans	Sustrans and local authority consortium: Local Sustainable Transport Fund	2011/12	2012-15	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 272 kg/yr	PROGRAMME COMPLETED	2016	NA
AQ4c	City Road Corridor Improvements	Promoting Travel Alternatives	Promoti on of cycling	LA lead and funding source	2014/15	2015/16	Improved journey times. Improved mode share of journey. Improved average congestion	Calculated Annual NOx Reductions 266 kg/yr	Preliminary discussions	42735	

							(miles/minute)				
AQ9	Clean Air Grant	Promoting Low Emission Transport	Procurin g alternati ve Refuellin g infrastru cture to promote Low Emissio n Vehicles , EV rechargi ng, Gas fuel rechargi ng		2012	2013/14	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 57 kg/yr	In Delivery as per progress reports Project Reference 2622012	NA	NA
AQ6	Victoria Street / Shelton New Road Junction Improvement	Promoting Travel Alternatives	Promoti on of walking	LA lead and funding source	2011/12	2012/13	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Calculated Annual NOx Reductions 21 kg/yr	Scheme completed	NA	NA
HDS1	Real Time Bus Information	Promoting Travel Alternatives	Other	In partnership with First Potteries and D&G Bus: Local Transport Plan Capital Programme	2017/18	2017/18	Improved journey times. Improved mode share of journey.	Not calculated	Improved equipment reliability being progressed with supplier. Potential new contract wef September 2017	43190	Reliability of system to enable full rollout/switch on; maintenance costs to be agreed
HDS2	Improved Access to Health and Leisure facilities	Transport Planning and Infrastructur e	Other	LA lead and funding source	2015/16/1 7/18	2015/16/17/18	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Not calculated	Ongoing annual programme of work which will encourage walking and cycling as a means of transport to key leisure / Health destinations. Improved access to Tunstall Park now	Ongoing Annual Programme	

									completed incl pedestrian crossing & cycling facilities and road safety measures.		
HDS3	Programme of Bus Stop Improvements	Transport Planning and Infrastructur e	Bus route improve ments	Local Transport Plan Capital Programme	2015/16/1 7/19	2015/16/17/19	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Not calculated	Delivery of 3 Bus Stop Improvements incl Real Time information screens, new bus shelters & Raised kerbs	Ongoing Annual Programme	
HDS4	Wilson Road / New Inn Lane Junction Improvement	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio n	LA lead and funding source	2015/16	2016/17	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Not calculated	Detailed Design Complete. 3rd Party Land to be acquired	42825	
HDS5	Etruria Valley Major Highway & Transport Scheme	Transport Planning and Infrastructur e	Other	LA lead and funding source	2013/14/1 5	2015/16/17/18/1 9	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Not calculated	Preliminary design complete	31/012/18	
HDS6	Leek Road Corridor Improvements(Growth Deal)	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio n	LA lead and City Council Capital funding and Local Growth Deal funding	2015/16	2015/16/17/18	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Modelling in progress	Outline Design and costing	43465	
HDS7	Etruria Road Corridor Improvements(Growth Deal)	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio	LA lead and funding source	2015/16	2015/16/17/19	Improved journey times. Improved mode share of journey. Improved average	Not calculated	Outline Design and costing	43496	

			n				congestion (miles/minute)				
HDS	City Centre Ring Road (completion)	Traffic Managemen t	Other	LA lead and funding source	2015/16/1 7	2017/18/19	Improved journey times. Improved average congestion (miles/minute)	Not calculated	Feasibility, outline design, initial costing	43830	
HDS	Arbourfield Drive / Dividy Rd Junction Improvement	Transport Planning and Infrastructur e	Other	LA lead and funding source	2013/14	2014/15	Improved journey times. Improved average congestion (miles/minute)	Not calculated	Scheme under construction	31/04/2015	
HDS1	Trentham Lakes / A50 Strategic Signing	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio n	LA lead and funding source	2014/15	2015/16	Improved journey times. Improved average congestion (miles/minute)	Not calculated	Design underway	42277	
HDS1	Potteries Way / Bucknall Rd Junction Improvement	Traffic Managemen t	UTC, Congesti on manage ment, traffic reductio n	LA lead and funding source	2017/18	2018/19	Improved journey times. Improved average congestion (miles/minute)	Not calculated	Nil	43555	
HBE	1 Community Rail Partnership	Promoting Travel Alternatives	Promote use of rail and inland waterwa ys	LA lead and funding source	Commenc ed in 2005	ongoing	Increased use of local rail services	Not calculated	Above average passenger growth from work of partnership. Wider Stakeholder Partnership for the line also established to call for improved frequency and capacity on this East Midlands service	Ongoing – new East Midlands franchise due to start in 2018	Rail Industry timescales and constraints lead to long lead in time for requested service improvements
HBE	2 Concessionary Bus Pass Scheme	Promoting Travel Alternatives	Other	LA lead and funding source	ongoing	ongoing	Maintaining use of local bus services	Not calculated	ongoing	ongoing	reducing bus network = reduced opportunities for bus travel for pass holders - could lead to more private car/taxi trips

HBE3	Home to Work Scheme	Promoting Travel Alternatives	Personal ised Travel Planning	LA lead and funding source	Commenc ed 2011	ongoing	Number of clients assisted	Not calculated	PROGRAMME COMPLETED	Completed	
FP1	Fleet Renewal	Vehicle Fleet Efficiency	Promoti ng Low Emissio n Public Transpo rt	LA lead and funding source	Commenc ed	2016/17	Reduced emissions	Not calculated	Completed 2016/17		
Sot2	Wayfinding Programme	Promoting Travel Alternatives	Promoti on of walking	LA lead and funding source	2016/17	2017/18	Improved journey times. Improved mode share of journey. Improved average congestion (miles/minute)	Not calculated	Contracts let for design and build. Community engagement progressing well.	Ongoing	Delays in signs installed
Sot1	Participation in Rail North Association and West Midlands Rail	Promoting Travel Alternatives	Promote use of rail and inland waterwa ys	LA lead and funding source	Commenc ed in 2015	ongoing	Increased use of local rail services	Not calculated	Ongoing – secured committed obligation of extra Northern Sunday services from May 2018, new rolling stock late 2018. Additional amount of service to local stations anticipated in new West Midlands franchise	Ongoing – extra Northern Sunday services from May 2018, new rolling stock late 2018. New West Midlands Franchise due to start this Autumn with improved amount of service at local stations	Additional improvements are difficult to achieve with constrained rail network capacity

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations

Particulate matter, or PM, is the term used to describe particles found in the air, including dust, dirt and liquid droplets. PM comes from both natural and man-made sources, including traffic emissions and Saharan-Sahel dust. These particles can be suspended in the air for long periods of time, and can travel across large distances.

PM less than 10 micrometres in diameter (PM₁₀) pose a health concern because they can be inhaled into and accumulate in the respiratory system.

PM less than 2.5 micrometres in diameter (PM_{2.5}) are referred to as "fine" particles and are believed to pose the greatest health risks, as they can lodge deeply into the lungs and also pass into the bloodstream.

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM_{2.5} (particulate matter with an aerodynamic diameter of 2.5µm or less).

There is clear evidence that $PM_{2.5}$ has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases. In England, the total cost due to PM_{2.5} to the NHS and social care in 2017 is estimated to be £41.2million, rising to £76.1million when diseases are included where there is less robust evidence for an association. The diseases for which there is a stronger evidence of an association include: Coronary Heart Disease (CHD), Childhood asthma, Stroke, Lung Cancer. Those with less strong evidence of an association include: Chronic Obstructive Pulmonary Disease (COPD), Diabetes, and Low birth weight⁴.

PM_{2.5} is hence the particulate pollutant which has the biggest impact on public health and on which the Public Health Outcomes Framework (PHOF) indicator 3.01⁵ is based. The Royal College of Physicians (RCP) undertook a review in February 2016⁶ where they found that long term exposure to air pollution impairs lung function growth in children, and that outdoor exposure is linked to lung cancer in adults.

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/708855/Estimation_of_costs_to_the_NHS_and

https://fingertips.phe.org.uk/profile/public-health-outcomes-framework/data#page/3/gid/1000043/pat/6/par/E12000005/ati/102/are/E10000028/iid/30101/age/230/sex/4 ⁶ ['Every Breath we Take: The Lifelong Impact of Air Pollution; Report of a working Party, February 2016, ISBN 978-1-86016-567-2],

⁴ PHE. Estimation of costs to the NHS and social care due to the health impacts of air pollution: summary report. May 2018. Accessed 27 June 2019

2.3.1 Particulate Matter (PM2.5) Levels in Stoke-on-Trent and Staffordshire

While a number of the Staffordshire Local Authorities currently monitor locally for PM_{10} , Defra's Automatic Urban and Rural Network (AURN) site at Stoke-on-Trent Centre has a dedicated $PM_{2.5}$ monitor.

Table 2.3 1 presents data on the local level of $PM_{2.5}$ annual mean concentrations for Stoke-on-Trent and Staffordshire. Where the data is derived from PM_{10} monitoring this has been adjusted by applying a correction factor of 0.7 to derive the $PM_{2.5}$ component. The correction factor has been derived from the average of all ratios of $PM_{2.5}/PM_{10}$ for the years from 2010 to 2014 for forty sites within the Automatic Urban and Rural Network (AURN) where these substances are measured on an hourly basis and follows the guidance published in LAQM (TG16).

Annual Mean PM10 and PM2.5 Results from monitoring Staffordshire Authorities 2013- 2017												
Authority	Site Type	Monitor	OS Grid				Year					
		Location	Ref		2014	2015	2016	2017	2018			
Newcastle	Roadside	Queen`s	E385057	PM ₁₀	22	22.9	(5)	(5)	(5)			
under Lyme	Reddonde	Gardens	N346137	PM _{2.5}	15.4 ⁽¹⁾	16 ⁽¹⁾	(5)	(5)	(5)			
Cannock	Deedeide	Cannock	E401392	PM ₁₀	-	-	-	14	18			
Chase	Roadside	A5190	N309954	PM _{2.5}	-	-	-	9.8	12.6			
	Roadside		E386288	PM 10	-	-	-	23	23			
		Basford	N346802	PM _{2.5}	-	-	-	16 ⁽¹⁾	16 ⁽¹⁾			
	Roadside	A50	E392548	PM ₁₀	-	20 ⁽²⁾	20 ⁽²⁾	18	19			
Stoke on Trent		Roadside Meir	N342572	PM _{2.5}	-	14 ⁽²⁾	14 ⁽²⁾	13 ⁽¹⁾	13 ⁽¹⁾			
Tent	Urban Background	Stoke on Trent Centre	E388351 N347895	PM _{2.5}	10	12	12	9	9			
	Roadside	Middleport	E385780	MP10	24	22	(3)	(3)	(3)			
		maaloport	N349376	PM2.5	17 ⁽¹⁾	15 ⁽¹⁾	(3)	(3)	(3)			
East	Roadside	Derby	E424671	PM 10	31	23	(4)	(4)	(4)			
Staffordshire	Rodusiue		N324019	PM _{2.5}	21.7 ⁽¹⁾	16.1 ⁽¹⁾	(4)	(4)	(4)			

Table 2.3 1 Annual Mean PM_{10} and $PM_{2.5}$ results of monitoring by Staffordshire Authorities 2014 to 2018

(1)PM_{2.5} results are derived from PM10 monitored results corrected with a 0.7 correction factor in accordance with TG16 -

Annex B: Derivation of PM_{2.5} to PM₁₀ Ratio. All other results are directly monitored.

(2) Valid data capture for 2015 was 59%. The site was commissioned on 22 May 2015.

(3) Middleport monitor was decommissioned at the end 2015

(4) East Staffordshire's monitors were decommissioned 2016

(5) Newcastle under Lyme monitors were Decommissioned 2016

As can be seen from the results, concentrations of $PM_{2.5}$ within Stoke-on-Trent and Staffordshire are below the 2020 EU limit value of $25\mu g/m^3$.

2.3.2 PM_{2.5} and Mortality in Staffordshire & Stoke-on-Trent

Although the levels of $PM_{2.5}$ within Stoke on Trent are below the 2020 EU Limit value, the impact on adult mortality directly attributable to $PM_{2.5}$ is nonetheless still an important public health issue.

The mortality burden associated with long-term exposure to human-made particulate air pollution (measured as $PM_{2.5}$) for Stoke-on-Trent in 2017, expressed as the percentage of annual deaths from all causes in those aged 30+ (indicator 3.01 in the Public Health Outcome Framework (PHOF)) was 4.4% which is lower than that for the West Midland Region of 4.9% and the England average of 5.1%.⁷

The percentage estimated number of deaths attributable to $PM_{2.5}$ in adults over 30 has been translated into the estimated number of attributable deaths for each local authority area. The data for the City and Staffordshire is shown in Table 2.3 2 for 2017, the latest data available at the time of this report.

⁷ PHOF. Fraction of mortality attributable to particulate air pollution in 2017. https://fingertips.phe.org.uk/profile/public-health-outcomes-framework/data#page/3/gid/1000043/pat/6/par/E12000005/ati/102/are/E06000021/iid/30101/age/230/sex/4

Table 2.3 2 Public Health Outcomes Framework Indicator 3.01- Fraction of annual all cause adult mortality attributable to anthropogenic (human made) particulate air pollution (measured as fine particulate matter, PM2.5) for Staffordshire Authorities 2013 to 2017⁸

Estimated numbers of annual all-cause adult mortality attributable to anthropogenic (human-made) particulate air pollution (measured as fine particulate matter, PM_{2.5}*) for Staffordshire 2013 to 2017⁸

* Fraction of annual all-cause adult mortality attributable to anthropogenic (human-made) particulate air pollution (measured as fine particulate matter, PM2.5*)

	5				201	4		201	5		201	6		201	7
District/County	- all causes persons 30+	%*	Estimated attributable deaths	Deaths - all causes persons 30+	%*	Estimated attributable deaths	Deaths - all causes persons 30+	%*	Estimated attributable deaths	Deaths - all causes persons 30+	%*	Estimated attributable deaths	Deaths - all causes persons 30+	%*	Estimated attributable deaths
Newcastle- under-Lyme	1295	4.9	60	55	4.7	60	55	4.2	50	1291	4.7	60	1197	4.2	50
Stafford	1261	4.9	60	65	4.8	60	60	4.7	60	1254	4.8	60	1267	4.3	50
East Staffordshire	1097	5.1	60	55	5.1	50	55	4.8	50	1065	5.6	60	1098	5.0	50
South Staffordshire	1102	5.1	60	55	5	50	55	4.7	60	1128	5.1	60	1239	4.5	60
Lichfield	1050	5.1	50	50	5	50	50	4.6	50	1044	5.5	60	1070	4.9	50
Staffordshire Moorlands	1085	4.7	50	45	4.5	50	45	4	40	1110	4.6	50	1127	3.9	40
Cannock Chase	787	5.1	40	45	5.1	40	45	4.6	40	879	5.4	50	940	4.7	40
Tamworth	592	5.5	30	35	5.4	30	30		30	615	6	40	634	5.3	30
Stoke-on- Trent	2412	5.2	125	2318	5.0	115	2479	4.9	110	2454	5.0	120	2490	4.4	110
Staffordshire County	8269	5	420	400	4.9	400	390	4.5	390	8386	5.2	430	8572	4.5	390

⁸ Source Public Health England https://fingertips.phe.org.uk/profile/public-health-outcomes-framework/data#page/3/gid/1000043/pat/6/par/E12000005/ati/102/are/E10000028/iid/30101/age/230/sex/4

2.3.3 Actions being taken within Staffordshire to reduce PM_{2.5}

The City together with a number of other Staffordshire Authorities are involved in implementing measures to reduce $PM_{2.5}$ since these are complimentary to those being taken to reduce NO_2 levels which are detailed elsewhere in this report. A mapping exercise completed by the Staffordshire Air Quality Forum details the measures currently in place which are considered to have an impact in reducing $PM_{2.5}$ across the County. These are highlighted in Table 2.3 3. and accord with evidence based measures highlighted by Public Health England's review of interventions to improve outdoor air quality.⁹

⁹ Source Public Health England

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/795185/Review_of_interventions_to_improve_a ir_quality.pdf

Measures category	Measures category Measure Classification	Effect on reduci ng NOx and	on reduci ng NOx and Reduces PM10 emission s					Local A	Authority				
			emission	Stoke on Trent CC	Staffordshire Moorlands DC	Newcastle under - Lyme BC	Stafford BC	Cannock	Chase DC	East Staffs BC	Lichfield DC	South Staffs DC	Tamworth BC
	Urban Traffic Control systems, Congestion management, traffic reduction	low	V	~	UTC in Leek Town Centre	UTC in areas of Newcastle Town Centre AQMA and Kidsgrove AQMA	UTC in Stafford Town Centre		Cannock Centre	Town Centre Regeneration Programme a number of schemes are currently being progressed which will aid traffic management. Many of these will then help improve traffic flow within the AQMA	LDC is liaising with Midlands Connect to increase volume of traffic using M6 Toll to reduce congestion on the A5 as well as lobbying Highways England to uggrade the A38 & A5 to expressways.		UTC in Tamworth Town Centre at Ventura Park
Traffic Management	Management Reduction of speed limits, 20mph zones Road User Charging	low	~	~			20mph zones near some schools in residential areas	Brer Hendes Rugeley &	zones in reton, sford and & Plans for n Canes	20 mph zones near some schools in residential areas		20mph zones in Trysull, Bradley, Kinver and Bilbrook	
		low	~						Toll		M6 Toll	M6 Toll	
	Anti-idling enforcement	low	✓ ✓										
	Other Workplace Travel Planning	low	~	A limited programme de	livered through DfT Acces	ss Fund			for work in	the vicinity of AQMAS i		year work & school trave	el plan programme
	Encourage / Facilitate home- working	low	~	Agile working adopted by Stoke- on-Trent CC			~		working adopted	Homeworking policy adopted	Homeworking policy adopted	Agile working policy adopted	Homeworking policy adopted
Promoting Travel Alternatives	School Travel Plans	low	~		Modeshift STARS					https:/	/www.staffordshire.gov.u	k/actives chool travel	
	Promotion of cycling	low	~		Stoke-on-Trent Cycle Map & Guid					https://www.staffor	dshire.gov.uk/transport/cy	cling/Cycle-maps/cyclema	os.aspx
	Promotion of walking	low	~			Travel Smart			https:/www.staffordshire.gov.uk/environment/eLand/RightsofWay/PromotedRoutes/home.aspx				tes/home.aspx
	Staffordshire Share a Lift Scheme		~		Stoke on Tr				https://www.staffordsl	nire.gov.uk/transport/gree	ntravel/carsharing/Car-sha	ring.aspx	

Table 2.3 3 Actions being taken within Staffordshire to reduce $PM_{2.5}$

	Promote use of rail and inland waterways	mediu m	~	North Staffordshire Community Rail Partnership	North Staffordshire Community Rail Partnership operating along the North Staffordshire Line includes Blythe Bridge Rail Station. The County Council Draft Rail Strategy is available from: http://moderngov.st affordshire.gov.uk/d ocuments/s69891/A ppendix%201%20f or%20Rail%20Strat egy.pdf	North Staffordshire Community Rail Partnership operating along the North Staffordshire Line includes Blythe Bridge Rail Station. The County Council Draft Rail Strategy is available from: http://moderngov.st affordshire.gov.uk/d ocuments/s68891/A ppendix%201%201 r%20Rail%20Strate gy.pdf	North Staffordshire Community Rail Partnership operating along the North Staffordshire Line includes Blythe Bridge Rail Station. The County Council Draft Rail Strategy is available from: http://moderngov.st affordshire.gov.uk/d ocuments/s69891/A ppendix%201%20f or%20Rail%20Strat egy.pdf ✓	SCC is a member of West Midlands Rail Ltd which will bring a change in the way that local rail services are managed and operated. The County Council Draft Rail Strategy is available from: Link & Link	Improvements at Burton Rail Station commenced.	Staffordshire County Council has produced a Draft Rail Strategy, April 2016 to improve the way local rail services are managed and operated https://www.stafford shire.gov.uk/transpor t/transportplanning/ Rail-strategy/Rail- Strategy.pdf			
	Local Transport Plans and District Strategies	high	V	Local Transport Plan					https://www.eaststaf fsbc.gov.uk/sites/def ault/files/docs/planni ng/planningpolicy/ex amination/c/C43Inte gratedTransportStrat egyamended14thJuly 2014.pdf				
Transport Planning & Infrastruc	Public transport improvement s- interchanges stations and services	low	¥			Kidsgrove Station interchange plans	Recent improvements completed at Stafford Rail Station	Planned improvements at Cannock Station as part of Mill Green development	Improvements at Burton Rail Station commenced.	Improvements planned at Lichfield City Station as part of Friarsgate development scheme. There are also plans to improve accessibility to all users at Lichfield Trent Valley Station		Planned improvements at Tamworth station	
ture	Public cycle hire scheme	low	V	Stoke Railway Station 'Brompton Dock' Bike Hire & Cycle Hub				In house Cycle to work scheme					
	Cycle network	low	V	A comprehensive network of on-street & traffic free routes. A forthcoming LCWIP will identify where improved maintenance & connectivity required.	f on-street ee routes. coming ill identify www.saffordshire.gov.uk/transport/cycling/cyclemaps.aspx mproved nance & ctivity								

	Bus route improvement s	high	~	Transforming Cities Fund is currently investigated options for some limited improvements.	Potential bus stop upgraded in Cheadle Town Centre	RTPI routes 3 & 4 Newcastle Town Centre. Improved future bus services to Chatterley Valley	Improved bus priority and interchange on A518, Stafford post-SWAR	RTPI & improved stops at key locations within Rugeley. Upgraded bus stops to serve Cannock rail station	Removal of obstructions on New Street.		Bus stop upgrades in Wombourne.	Improved bus infrastructure route 2 Tamworth- Perrycrofts. RTPI Tamworth Town Centre and Ventura Park. Victoria Road, Tamworth upgraded interchange.
Alternatives to private vehicle use	Bus based Park & Ride	mediu m	~					nil		New bus central station as part of Friarsgate development scheme		
	Car Clubs	low	~					nil				
Policy Guidance and Development Control	Planning applications to require assessment of exposure / emissions for development requiring air quality impact assessment	high	~				~	Local plan - Policy CP16 - Climate Change and Sustainable Resource Use Cannock chase. Www.cannockchas edc.gov.uk/sites/def ault/files/local_plan _part_1_09.04.14_1 	http://www.eaststaff sbc.gov.uk/planning/ planning-policy/local- plan-2012-2031	https://www.lichfi elddc.gov.uk/Coun cil/Planning/The- local-plan-and- planning- policy/Planning- policy.aspx		Local & National Validation requirements 2017: http://www.tamwo rth.gov.uk/sites/de fault/files/plannin g_docs/National- and-Local- Validation- requirements- 2017.pdf
	Air Quality Strategy		~	Local Air Quality Strategy - Stoke- on-Trent City Council			¥	nil	http://www.eaststaff sbc.gov.uk/environ mental- health/pollution/air- quality			
hhPolicy Guidance and Developm ent Control	Planning Guidance for developers		~	To develop planning guidance for developers and to develop into SPD once Local Plan Policies in Place			¥	http://www.cannock chasedc.gov.uk/resid ents/planning/planni ng- policy/supplementar y-planning-policy- documents	http://www.eaststaff sbc.gov.uk/sites/def ault/files/docs/polluti on/Air%20Quality% 20Policy%20for%20 Development%20C ontrol%20%28Publi c%20Version%29.p df			
	Developer Contribution s based on damage cost calculation		¥	To develop policies to secure contributions to offset pollution				http://www.cannock chasedc.gov.uk/site s/default/files/local plan part 1 09.04, <u>14 low res.pdf</u>	Yes			

	Planning Policies		~	To influence policies to support improvements in emissions through development of Staffordshire abd Stoke-on-Trent Joint Local Plan		~		http://www.eaststaff sbc.gov.uk/sites/def ault/files/docs/polluti on/Air%20Quality% 20Policy%20for%20 Development%20C ontrol%20%28Publi c%20Version%29.p df	https://www.lichfi elddc.gov.uk/Co uncil/Planning/Th e-local-plan-and- planning- policy/Planning- policy.aspx		
	STOR Sites (Short Term Operating Reserve) Energy Generation . Regulation via planning / permitting regime	high	~								
	Low Emissions Strategy	high	~								
	Freight Consolidatio	mediu m	~								
Freight and Delivery	n Centre Route Management Plans/ Strategic routing strategy for HGV's	high	~		https://ww	ww.staffordshire.gov.uk/tr	ansport/transportplanning	z/localtransportplan/apper	ndixl-staffordshirefreigh	tstrategy.pdf	
Manageme nt	Quiet & out of hours delivery	low	~			~	~				
	Delivery and Service plans	mediu m	~		 						
	Freight Partnerships for city centre deliveries	high	~								
Vehicle Fleet Efficiency	Driver training and ECO driving aids	mediu m	~	SOTCC provide driver assessment & driver CPC training service for drivers of large goods vehicles. SOTCC operational fleet fitted with Stop/Start technology where		~	~	~			

	Promoting			available to reduce fuel usage. 70% of SOTCC recycling waste collection vehicles have 'Fuel Sense' technology fitted to reduce fuel usage.						
	low emission public transport	high	~							
	Vehicle retrofitting programmes	mediu m	~	70% of SOTCC operational fleet meet, the EURO VI emission standard 90% of SOTCC's waste collection vehicles have electric bin lifting equipment fitted to reduce fuel usage.					Retrofitting of old Council owned HGVs and Buses with pollution abatement equipment will be considered by the Council where technically and financially feasible	
	Fleet efficiency and recognition schemes	mediu m	~	SOTCC are a 3 star member of Eco Stars Fleet Recogniton Scheme	<u>Staffor</u>	dshire and Stoke-on-Trent	Eco-Stars http://www.e	ecostars-uk.com/eco-stars-sc	<u>hemes/</u>	
	Low emission zone (LEZ) Clean Air Zone (CAZ)	high	~							
Promoting low emission transport	Public Vehicle Procureme nt - Prioritisin g uptake of low emission vehicles	high	~	SOTCC's procurement process includes the valuation of alternatively fuelled vehicles for the operational fleet. Services are challenged to consider alternatively fuelled vehicle at the point of replacement.			Waste fleet vehicles comply with Euro VI.			
	Company Vehicle Procureme nt - Prioritisin g uptake of low emission vehicles	high	¥	SOTCC's procurement process includes the evaluation of alternatively fuelled vehicles for the operational fleet.		×			LDC looking to replacing old vehicles within the fleet with more modern cleaner vehicles, which comply with the prevailing EURO standard. This will be extended to all Council owned vehicles.	

	Procuring alternative Refuelling infrastruct ure to promote Low Emission Vehicles, EV recharging , Gas fuel recharging Priority parking for LEV's Taxi Licensing conditions Taxi emission incentives Introductio n/increase of environme nt charges through permit systems	high high medium medium	× × ×	SOTCC installed electric charging infrastructure in 2017 for the operational fleet. Electric Vehicle charging spaces Hackney Carriage & Private Hire Licensing Policy 2016-2019 Successful joint bid for funds to install Taxi ELV charging points			×	Unable to achieve at a local level without central		LDC liaising with Planning to include as part of new developments. Electric Vehicle charging spaces		
Environme ntal permits	and economic instrument s (Permit fees set centrally) Measures to reduce pollution through IPPC Permits going beyond BAT	medium	~		https:/	//www.gov.uk/governmen	t/uploads/system/uploads	government approval	'211863/env-permitting-gene	ral-guidance-a.pdf (Cha	pter <u>15)</u>	
	Large Combustio n Plant Permits and National Plans going beyond BAT	high	~									
Other measures	Other Smoky Diesel Hotline		✓ ✓				https://v	www.gov.uk/report-sm	oky-vehicle			

A5 and Partne p		~					<u>http://www.hinckl</u> <u>ey-</u> <u>bosworth.gov.uk/i</u> <u>nfo/10020/strateg</u> <u>ies plans and pol</u> <u>icies/1272/a5 par</u> <u>tnership</u>		Strategy for the A5 2011-2026	Strategy for the A5 2011-2026	
Domes Smoke Contre advice Enforc nt	ke rol se and	~	Smoke control advice	-	-	~	http://www.canno ckchasedc.gov.uk/ residents/environ mental- health/environme ntal- protection/chimn ey-smoke	http://www.eaststaffsbc .gov.uk/environmental- health/pollution/smoke- control-areas	https://www.lichfield dc.gov.uk/home- garden/bonfires- barbecues-smoke/1	https://www.sstaffs. gov.uk/environment /smoke-control- areas.cfm	
Garde Bonfir Advice and nuisar enforc nt	ires - ce ance	~	Garden bonfires	-	-	~	http://www.canno ckchasedc.gov.uk/ residents/environ mental- health/environme ntal- protection/bonfire -smoke-nuisance	http://www.eaststaffsbc .gov.uk/environmental- health/pollution/bonfire §	https://www.lichfield dc.gov.uk/home- garden/bonfires- barbecues-smoke/1	https://www.sstaffs .gov.uk/crime- nuisances/bonfires- and-smoke.cfm	http://www.tamwort h.gov.uk/air-quality
Comm al buri advice enforc nt	rning æ and ceme	~	advice	-	-	v	http://www.canno ckchasedc.gov.uk/ residents/environ mental- health/environme ntal- protection/bonfire -smoke-nuisance	http://www.eaststaffsbc .gov.uk/environmental- health/pollution/bonfire δ	https://www.lichfield dc.gov.uk/home- garden/bonfires- barbecues-smoke/1		http://www.tamwort h.gov.uk/air-quality
Multi agenc workir Servic and Envirc nt Age for tra burnin	cy ing Fire ce ronme Jency ade	✓		-	-	~	Information shared as appropriate		Information shared as appropriate		Information shared as appropriate
Multi agenc workir with Staffo ire Fir Servic and LL Autho Buildi Contre arding chimn fires a compl s abou DIY domes heatin syster	cy ing ordsh re ce occal ority iing rolreg g ney and blaint but sstic ng	~		-	-		Information shared as appropriate		Information shared as appropriate		

	Stoke-on- Trent Low Carbon District Heat Network	~	Stoke-on-Trent Low Carbon District Heat Network	-	-							
--	---	---	---	---	---	--	--	--	--	--	--	--

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

Stoke-on-Trent City Council undertook automatic (continuous) monitoring at two sites during 2017. In addition, there are two Automatic Urban and Rural Network (AURN) sites in the city. Table A.1 in Appendix A shows the details of the sites. National monitoring results are available at <u>https://uk-air.defra.gov.uk/</u>

There have been no changes to the location of automatic monitors during 2018.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C3.

3.1.2 Non-Automatic Monitoring Sites

Stoke-on-Trent City Council undertook non-automatic (passive) monitoring of NO_2 at 68 sites during 2018. Table A.2 in Appendix A shows the details of the sites.

Only two sites were decommissioned at the end of 2017, DT72 and DT73. Both monitoring locations were put in place to assess the effect of shuttle buses travelling between the hospital staff car park and the hospital via a residential area. Both sites were found to be significantly below the objective and therefore no further monitoring was necessary.

Two new monitoring sites were commissioned in 2018, to determine the concentration of nitrogen dioxide adjacent to the A53 (Etruria Road) to the east of the A500 roundabout. Two sections of the A53 had been identified as exceeding the EU limit value from PCM modelling for Census ID 26555 located within Stoke-on Trent City Council administrative boundary and Census ID 74058 located within Newcastle-under-Lyme Borough Council administrative boundary. The concentration at site DT105 and DT106 (on opposite side of the carriageway within Census ID 26555) were 34 μ g/m³ and 33 μ g/m³ respectively. The tubes were located on lampposts,

near to bus stops and were therefore considered worst-case locations. The distances of the tubes from the kerb were 2.0 m and 0.6 m respectively. The EU limit value is measured at 4 m from the kerb. It is known that the concentration of NO_2 falls off with increasing distance from the road; therefore we can be reasonably confident that the limit value is not exceeded at either of these sites.

Maps showing the location of all diffusion tube monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. "annualisation" and/or distance correction), are included in Appendix C3.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias. Data capture for all monitors was at least 75%, therefore "annualisation" was not necessary. Where the monitor was closer to a road than the nearby human receptor, distance correction was carried out. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.3 in Appendix A compares the ratified and adjusted monitored NO₂ annual mean concentrations for the past five years with the air quality objective of $40\mu g/m3$.

For diffusion tubes, the full 2018 dataset of monthly mean values is provided in Appendix B.

Where the monitoring location was sited closer to the road than the nearest receptor, a calculation was carried out to determine the likely concentration at the receptor. Details of where the calculation was applied and the resulting value at the receptor is included in the text accompanying the graphs in Figures A. 1 to A. 18. Distance correction calculations have been included in Appendix C 3.

The number of monitoring locations where the NO₂ concentration was greater than $40 \ \mu g/m^3$ was 18. This was a reduction in the number for 2017, when the number of exceedances was 27. At one monitoring location, the concentration was greater than $60 \ \mu g/m^3$ (DT17 72 $\mu g/m^3$), this indicated that the annual mean objective may be exceeded at this location.

Table A.4 in Appendix A compares the ratified continuous monitored NO₂ hourly mean concentrations for the past five years with the air quality objective of $200\mu g/m^3$, not to be exceeded more than 18 times per year. No site exceeded the objective.

3.2.2 Particulate Matter (PM₁₀)

Table A.5 in Appendix A compares the ratified and adjusted monitored PM_{10} annual mean concentrations for the past five years with the air quality objective of $40\mu g/m^3$. The annual mean objective has never been exceeded at any site in the city.

Figure A.19 clearly shows that the annual mean concentration is significantly below the objective.

Table A.6 in Appendix A compares the ratified continuous monitored PM_{10} daily mean concentrations for the past five years with the air quality objective of $50\mu g/m^3$, not to be exceeded more than 35 times per year. There has been no exceedance of the 24-hour mean.

3.2.3 Particulate Matter (PM_{2.5})

Table A.7 in Appendix A presents the ratified and adjusted monitored $PM_{2.5}$ annual mean concentrations for the past five years. Monitoring shows that the WHO guidelines have not been exceeded for the second successive year.

Figure A. 20 Shows a graph of PM_{2.5} monitoring results since 2013.

Appendix A: Monitoring Results

Table A.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Monitoring Technique	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m)	Inlet Height (m)
CM1	Stoke-on- Trent Centre AURN	Urban Background	388355	347893	NO ₂ ; PM2.5; O3; benzene	YES	Chemiluminescent; TEOM/FDMS; UV Absorbtion; Non-automatic pumped	4.7	4.7	4
CM2	Joiners Square	Roadside	388743	346457	NO ₂	YES	Chemiluminescent	0.4	0.4	2.9
CM3	Middleport	Roadside	Decommissioned 2015							
CM4	Fenton	Industrial	Decommissioned 2013							
CM5	Basford	Roadside	386288	346802	NO ₂	YES	Chemiluminescent	5.1	5.1	2.1
CM6	Stoke-on- Trent A50 Roadside AURN	Roadside	392584	342569	NO ₂ ; PM10	YES	Chemiluminescent; TEOM/FDMS	11	11	4

Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property).

(2) N/A if not applicable.

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m) ⁽¹⁾	Distance to kerb of nearest road (m)	Tube collocated with a Continuous Analyser?	Height (m)
DT1	1994/01	Urban Background	386402	343705	NO ₂	YES	9	1.5	NO	2.8
DT2	1999/01	Roadside	389884	347288	NO ₂	YES	0.1	2	NO	2.5
DT3	1999/02	Urban Background	390612	350793	NO ₂	YES	6.5	2	NO	2.7
DT4	2001/04	Roadside	392705	342518	NO ₂	YES	0	9	NO	3
DT5	2001/11		Decommissioned end 2016		NO ₂					
DT6	2001/13		Decommissioned end 2016		NO ₂					
DT7	2002/01		Decommissioned end 2016		NO ₂					
DT8	2003/02	Roadside	388355	347893	NO ₂	YES	4.7	9.6	YES	3.3
DT9	2005/01	Roadside	387626	348515	NO ₂	YES	0	4.6	NO	2.6
DT10	2005/02	Roadside	386929	349855	NO ₂	YES	0	3.7	NO	2.4
DT11	2005/03		Decommissioned end 2016		NO ₂					
DT12	2005/04		Decommissioned end 2016		NO ₂					
DT13	2005/07	Roadside	392471	342631	NO ₂	YES	3.3	1.7	NO	2.9
DT14	2005/08	Roadside	392587	342578	NO ₂	YES	1.7	2	NO	2.9
DT15	2005/11	Roadside	389335.6	344693.4	NO ₂	YES	0	2	NO	2.4
DT16	2005/13	Roadside	385975	346574.6	NO ₂	YES	0	2.6	NO	2.6
DT17	2005/14	Roadside	386270	346782.4	NO ₂	YES	0.8	1.8	NO	2.5

Table A.2 – Details of Non-Automatic Monitoring Sites

DT18	2005/15		Decommissioned end 2016		NO ₂					
DT19	2005/16		Decommissioned end 2016		NO ₂					
DT20	2005/17	Roadside	388842	346642	NO ₂	YES	0	2	NO	2.3
DT21	2005/19	Roadside	Decommissioned end 2016		NO ₂					
DT22	2005/20	Roadside	Decommissioned end 2016		NO ₂					
DT23	2005/22	Roadside	388704	347607.7	NO_2	YES	0	2.8	NO	2.6
DT24	2005/23	Roadside	393201	342409	NO ₂	YES	0	1.8	NO	2.7
DT25	2005/28		Decommissioned end 2016		NO ₂					
DT26	2005/30		Decommissioned end 2016		NO ₂					
DT27	2005/31		Decommissioned end 2016		NO ₂					
DT28	2005/33		Decommissioned end 2015		NO ₂					
DT29	2005/34	Roadside	386904	349828.4	NO_2	YES	0	5.8	NO	2.6
DT30	2005/36		Decommissioned end 2016		NO ₂					
DT31	2005/39		Decommissioned end 2016		NO ₂					
DT32	2005/41	Roadside	388697.9	346421.5	NO_2	YES	2.8	3.2	NO	2.5
DT33	2005/44		Decommissioned end 2016		NO ₂					
DT34	2005/45	Roadside	389231.5	345026.3	NO ₂	YES	0	1.9	NO	2.5
DT35	2005/47		Decommissioned end 2016		NO ₂					
DT36	2005/48		Decommissioned end 2016		NO ₂					
DT37	2005/50	Roadside	393260	342460	NO ₂	YES	0	3.6	NO	2.5

DT38	2005/51		Decommissioned end 2016		NO ₂					
DT39	2005/54		Decommissioned end 2016		NO ₂					
DT40	2005/56	Roadside	392777	342409	NO ₂	YES	0	11	NO	2.7
DT41	2005/57	Roadside	392741	342435	NO ₂	YES	0	11	NO	2.6
DT42	2005/58	Roadside	392676.1	342481.4	NO ₂	YES	2.6	16	NO	2.5
DT43	2005/59		Decommissioned end 2016		NO ₂					
DT44	2005/62		Decommissioned end 2015		NO ₂					
DT45	2008/05		Decommissioned end 2015		NO ₂					
DT46	2008/09		Decommissioned end 2016		NO ₂					
DT47	2008/10		Decommissioned end 2016		NO ₂					
DT48	2008/12		Decommissioned end 2016		NO ₂					
DT49	2008/13	Roadside	388536	347143	NO ₂	YES	NA	2.8	NO	2.5
DT50	2009/02		Decommissioned end 2015		NO ₂					
DT51	2009/04	Roadside	386380.4	346860	NO ₂	YES	2.3	15	NO	2.7
DT52	2009/05	Roadside	385812.3	346545.9	NO ₂	YES	1.9	2.6	NO	2.5
DT53	2010/01	Roadside	387938	345939	NO ₂	YES	0	2.6	NO	2.5
DT54	2010/02		Decommissioned end 2014		NO ₂					
DT55	2010/05	Roadside	393320	342206	NO ₂	YES	0	5	NO	2.7
DT56	2012/01	Roadside	386288	346802	NO ₂	YES	5.1	4.5	YES	2.1
DT57	2012/04		Decommissioned end 2016		NO ₂					
DT58	2012/05		Decommissioned		NO ₂					

			end 2015							
DT59	2012/06		Decommissioned end 2015		NO ₂					
DT60	2012/07		Decommissioned end 2016		NO ₂					
DT61	2014/01	Roadside	390710	350261	NO ₂	YES	0	1.9	NO	
DT62	2014/02		Decommissioned end 2014		NO ₂					
DT63	2016/01	Roadside	385928.8	346563.2	NO ₂	YES	0	2	NO	2.6
DT64	2016/02	Roadside	385937	346531	NO ₂	YES	1	1.6	NO	2.6
DT65	2016/03	Roadside	385943	346504	NO ₂	YES	0	2	NO	2.5
DT66	2016/04	Roadside	385978.5	346315.8	NO ₂	YES	0	1.7	NO	2.5
DT67	2016/05	Roadside	386023.5	346152.6	NO ₂	YES	2.1	2.1	NO	2.5
DT68	2016/06		Decommissioned end 2016		NO ₂					
DT69	2016/07		Decommissioned end 2016		NO ₂					
DT70	2016/08		Decommissioned end 2016		NO ₂					
DT71	2016/09		Decommissioned end 2016		NO ₂					
DT72	2017/01	Roadside	386014	346137	NO ₂	YES	2	2.4	NO	2.7
DT73	2017/02	Roadside	386020.1	345932.7	NO ₂	YES	0	2.4	NO	2.6
DT74	2017/03	Roadside	393294.3	342508.6	NO ₂	YES	1.6	1.9	NO	2.6
DT75	2017/04	Roadside	393369.6	342177.6	NO ₂	YES	6.9	2.8	NO	2.6
DT76	2017/05	Roadside	385928.8	349765.3	NO ₂	YES	0.9	1.7	NO	2.4
DT77	2017/06	Roadside	385957.1	349756.5	NO ₂	YES	4.4	1.9	NO	2.4
DT78	2017/07	Roadside	386156.7	349596.1	NO ₂	YES	0	2.4	NO	2.4
DT79	2017/08	Roadside	386240	349581	NO ₂	YES	0	2.2	NO	2.4

DT80	2017/09	Roadside	386400	349571.1	NO ₂	YES	0	2.5	NO	2.4
DT81	2017/10	Roadside	386456	349598	NO ₂	YES	1.9	2	NO	2.3
DT82	2017/11	Roadside	386607.1	349656.3	NO ₂	YES	0	2.2	NO	2.4
DT83	2017/12	Roadside	390703.2	350221	NO ₂	YES	2.1	1.9	NO	2.3
DT84	2017/13	Roadside	386917.9	349850.5	NO ₂	YES	0.5	3.1	NO	2.3
DT85	2017/14	Roadside	386959	349850	NO ₂	YES	0	2.3	NO	2.2
DT86	2017/15	Roadside	386983	349861	NO ₂	YES	0	2.1	NO	2.3
DT87	2017/16		Decommissioned after 1 month - too close to catering exhaust		NO ₂					
DT88	2017/17	Roadside	387427.7	348830.1	NO ₂	YES	1.9	1.5	NO	2.5
DT89	2017/18	Roadside	387499.4	348695.4	NO ₂	YES	10.6	1.8	NO	2.5
DT90	2017/19	Roadside	387558.2	348623.1	NO ₂	YES	0	1.7	NO	2.3
DT91	2017/20	Roadside	387659.4	348482.3	NO ₂	YES	2.4	2.5	NO	2.6
DT92	2017/21	Roadside	388725	346464	NO ₂	YES	0	4.7	NO	2.4
DT93	2017/22	Roadside	388673.1	346372	NO ₂	YES	2.3	3	NO	2.3
DT94	2017/23	Roadside	388335	345880	NO ₂	YES	1.8	2.7	NO	2.3
DT95	2017/24	Roadside	388230	345742	NO ₂	YES	2.2	2.5	NO	2.3
DT96	2017/25	Roadside	388168.1	345663.4	NO ₂	YES	1.7	5.2	NO	2.3
DT97	2017/26	Roadside	387972	346002	NO ₂	YES	0	2.3	NO	2.3
DT98	2017/27	Roadside	388006.3	346155.9	NO ₂	YES	2.2	2.4	NO	2.3
DT99	2017/28	Roadside	388656	347612	NO ₂	YES	0	2.3	NO	1.8
DT100	2017/29	Roadside	388634.3	347613.8	NO ₂	YES	0	2.5	NO	1.9
DT101	2017/30	Roadside	385999	345936	NO ₂	YES	0	2.3	NO	2.6

DT102	2017/31	Roadside	386154.4	345834.5	NO ₂	YES	0	2.9	NO	2.7
DT103	2017/32	Roadside	388114	345483	NO ₂	YES	0	9	NO	2.4
DT104	2017/33	Roadside	387979	345650.1	NO ₂	YES	0	2.6	NO	2.4
DT105	2018/01	Roadside	386591.3	347017.5	NO ₂	YES	NA	2	NO	2.5
DT106	2018/02	Roadside	386660	347088	NO ₂	YES	NA	0.6	NO	2.5

Notes:

(1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).

(2) N/A if not applicable.

01010	0110 7 000	Monitoring	Valid Data Capture for	Valid Data		NO ₂ Annual M	ean Concentra	ation (µg/m³) ⁽³)
Site ID	Site Type	Туре	Monitoring Period (%) ⁽¹⁾	Capture 2018 (%) ⁽²⁾	2014	2015	2016	2017	2018
CM1	Urban Background	Automatic	98	98	28	28	28	26	23
CM2	Roadside	Automatic	96	96	37	40	45	38	33
CM5	Roadside	Automatic	85	85	<u>50</u>	47	50	51	55
CM6	Roadside	Automatic	98	98		<u>61</u>	<u>61</u>	56	53
DT1	Urban Background	Diffusion Tube	100	100	19	21	20	19	18
DT2	Roadside	Diffusion Tube	100	100	42	43	44	49	39
DT3	Urban Background	Diffusion Tube	100	100	17	18	19	18	16
DT4	Roadside	Diffusion Tube	100	100	36	38	37	37	32
DT5	Roadside	Diffusion Tube			34	33	34		
DT6	Roadside	Diffusion Tube			34	34	36		
DT7	Roadside	Diffusion Tube			31	33	34		
DT8	Roadside	Diffusion Tube	100	100	25	27	29	26	29
DT9	Roadside	Diffusion Tube	100	100	44	51	48	51	45
DT10	Roadside	Diffusion Tube	100	100	35	37	38	36	35
DT11	Roadside	Diffusion Tube			34	34	36		
DT12	Roadside	Diffusion Tube			45	49	49		

DT13	Roadside	Diffusion Tube	100	100	39	42	37	39	35	
DT14	Roadside	Diffusion Tube	100	100	40	41	41	40	37	
DT15	Roadside	Diffusion Tube	92	92	39	43	43	44	38	
DT16	Roadside	Diffusion Tube	100	100	49	53	54	51	49	
DT17	Roadside	Diffusion Tube	83	83	<u>76</u>	<u>77</u>	<u>80</u>	<u>71</u>	<u>72</u>	
DT18	Roadside	Diffusion Tube			39	36	42			
DT19	Roadside	Diffusion Tube			30	34	35			
DT20	Roadside	Diffusion Tube	100	100	37	43	40	39	35	
DT21	Roadside	Diffusion Tube			36	38	40			
DT22	Roadside	Diffusion Tube			37	38	39			
DT23	Roadside	Diffusion Tube	83	83	40	41	44	43	39	
DT24	Roadside	Diffusion Tube	92	92	43	42	44	44	42	
DT25	Roadside	Diffusion Tube			36	35	38			
DT26	Roadside	Diffusion Tube			28	29	31			
DT27	Roadside	Diffusion Tube			28	38	31			
DT28	Roadside	Diffusion Tube			30	29				
DT29	Roadside	Diffusion Tube	92	92	39	42	41	43	38	
DT30	Roadside	Diffusion Tube			32	34	37			
DT31	Roadside	Diffusion Tube			36	36	40			

				_			_	_	_	_
DT32	Roadside	Diffusion Tube	100	100	38	38	44	37	34	
DT33	Roadside	Diffusion Tube			32	32	36			
DT34	Roadside	Diffusion Tube	100	100	45	46	52	49	46	
DT35	Roadside	Diffusion Tube			34	37	39			
DT36	Roadside	Diffusion Tube			34	38	38			
DT37	Roadside	Diffusion Tube	100	100	41	44	45	45	42	
DT38	Roadside	Diffusion Tube			33	35	37			
DT39	Roadside	Diffusion Tube			38	38	39			
DT40	Roadside	Diffusion Tube	100	100	43	39	41	36	39	
DT41	Roadside	Diffusion Tube	100	100	40	37	41	32	37	
DT42	Roadside	Diffusion Tube	100	100	43	37	37	31	34	
DT43	Roadside	Diffusion Tube			36	38	41			
DT44	Roadside	Diffusion Tube			33	33				
DT45	Roadside	Diffusion Tube			32	33				
DT46	Roadside	Diffusion Tube			33	37	37			
DT47	Roadside	Diffusion Tube			39	39	40			
DT48	Roadside	Diffusion Tube			46	47	47			
DT49	Roadside	Diffusion Tube	100	100	34	38	38	40	38	
DT50	Roadside	Diffusion Tube			22	22				

						1	1			
DT51	Roadside	Diffusion Tube	100	100	38	38	40	38	39	
DT52	Roadside	Diffusion Tube	83	83	48	51	52	50	48	
DT53	Roadside	Diffusion Tube	100	100	38	39	38	35	32	
DT54	Roadside	Diffusion Tube	100	100	32					
DT55	Roadside	Diffusion Tube	100	100	38	41	40	40	35	
DT56	Roadside	Diffusion Tube	100	100	46	50	50	49	50	
DT57	Roadside	Diffusion Tube			37	33	40			
DT58	Roadside	Diffusion Tube			33	32				
DT59	Roadside	Diffusion Tube			31	29				
DT60	Roadside	Diffusion Tube			36	34	37			
DT61	Roadside	Diffusion Tube	92	92	37	41	42	42	35	
DT62	Roadside	Diffusion Tube			28					
DT63	Roadside	Diffusion Tube	100	100			55	53	51	
DT64	Roadside	Diffusion Tube	83	83			38	38	36	
DT65	Roadside	Diffusion Tube	75	75			41	41	37	
DT66	Roadside	Diffusion Tube	100	100			34	33	30	
DT67	Roadside	Diffusion Tube	100	100			53	50	49	
DT68	Roadside	Diffusion Tube					26			
DT69	Roadside	Diffusion Tube					25			

DT70	Roadside	Diffusion Tube					27	
DT71	Roadside	Diffusion Tube					21	
DT72	Roadside	Diffusion Tube	92	92			33	35
DT73	Roadside	Diffusion Tube	100	100			35	32
DT74	Roadside	Diffusion Tube	100	100			48	44
DT75	Roadside	Diffusion Tube	100	100			44	38
DT76	Roadside	Diffusion Tube	100	100			38	37
DT77	Roadside	Diffusion Tube	92	92			46	48
DT78	Roadside	Diffusion Tube	100	100			43	38
DT79	Roadside	Diffusion Tube	100	100			40	38
DT80	Roadside	Diffusion Tube	100	100			33	32
DT81	Roadside	Diffusion Tube	100	100			35	34
DT82	Roadside	Diffusion Tube	100	100			35	33
DT83	Roadside	Diffusion Tube	92	92			42	37
DT84	Roadside	Diffusion Tube	100	100			38	36
DT85	Roadside	Diffusion Tube	83	83			36	37
DT86	Roadside	Diffusion Tube	100	100			38	36
DT87	Roadside	Diffusion Tube						
DT88	Roadside	Diffusion Tube	100	100			37	30

DT89	Roadside	Diffusion Tube	83	83		40	37	
DT90	Roadside	Diffusion Tube	100	100		39	35	
DT91	Roadside	Diffusion Tube	75	75		51	43	
DT92	Roadside	Diffusion Tube	100	100		35	32	
DT93	Roadside	Diffusion Tube	100	100		30	30	
DT94	Roadside	Diffusion Tube	100	100		36	31	
DT95	Roadside	Diffusion Tube	100	100		34	31	
DT96	Roadside	Diffusion Tube	100	100		32	29	
DT97	Roadside	Diffusion Tube	100	100		33	30	
DT98	Roadside	Diffusion Tube	100	100		29	27	
DT99	Roadside	Diffusion Tube	92	92		52	49	
DT100	Roadside	Diffusion Tube	75	75		50	45	
DT101	Roadside	Diffusion Tube	92	92		29	30	
DT102	Roadside	Diffusion Tube	100	100		31	33	
DT103	Roadside	Diffusion Tube	100	100		27	31	
DT104	Roadside	Diffusion Tube	83	83		42	42	
DT105	Roadside	Diffusion Tube	83	83			34	
DT106	Roadside	Diffusion Tube	83	83			33	

☑ Diffusion tube data has been bias corrected

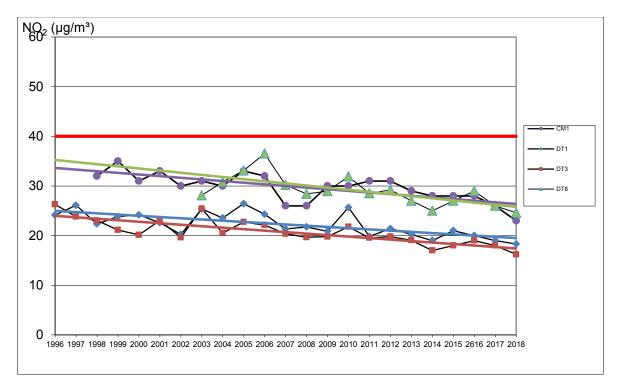
☑ Annualisation has been conducted where data capture is <75%

Notes:

Exceedances of the NO₂ annual mean objective of $40\mu g/m^3$ are shown in **bold**.

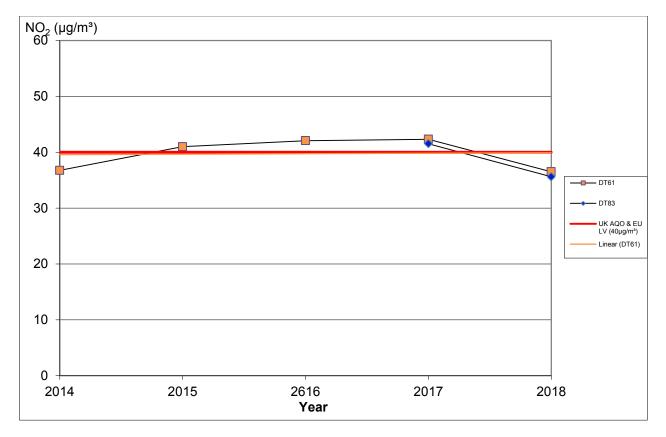
NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

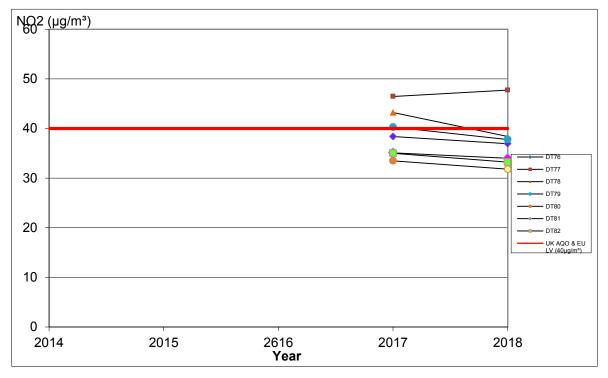

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Figure A.1 – Trends in Annual Mean NO₂ Concentrations – background monitoring sites


A map of monitoring locations is shown in Figure D. 2.

A clear downward trend can be seen at all background locations. All sites have remained significantly below the annual mean objective since monitoring began.


Figure A.2 – Trends in Annual Mean NO₂ Concentrations – Leek Road, Milton A map of monitoring locations is shown in Figure D. 3.

There is no clear trend in this area. However, 2018 data shows that concentrations at both monitoring sites were below the annual mean objective. Distance correction was carried out for DT83 as the tube is closer to the road than the nearest receptor. The corrected concentration was 33 μ g/m³. DT61 is not representative of human receptors, but represents worst-case as it is located at the traffic-light junction.

Figure A. 3 – Graph of Annual Mean NO₂ Concentrations – Newcastle Street Maps of monitoring locations are shown in Figures D. 4, D. 5, D. 6 and D. 7.

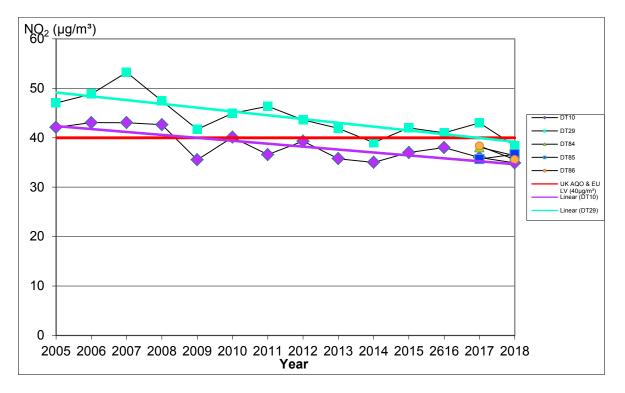

No trend data is available for this area, as monitoring has only been carried out for two years. The graph shows a reduction in concentrations at all sites compared to the previous year, with the exception of DT77, which shows an increase. The concentrations at DT77 is above 40 μ g/m³, however the tube is closer to the road than the receptor. Distance correction was calculated for this site resulting in a concentration of 39 μ g/m³ at the nearest property; which is therefore below the objective. There is no obvious reason for the anomalous increase in concentration at this site.

Figure A. 4 – Graph of Annual Mean NO₂ Concentrations – Burslem Centre A map of monitoring locations is shown in Figures D. 8.

There has been a consistent downward trend in concentrations in this area since monitoring began.

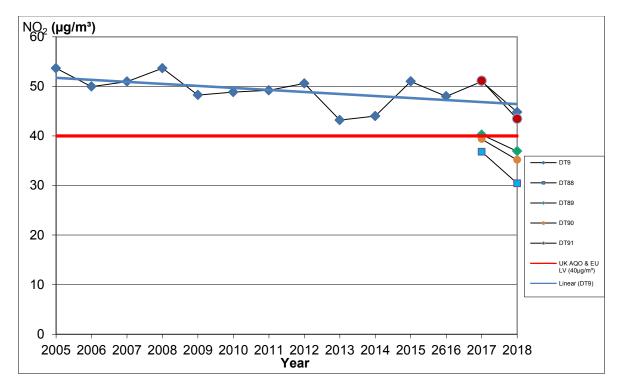
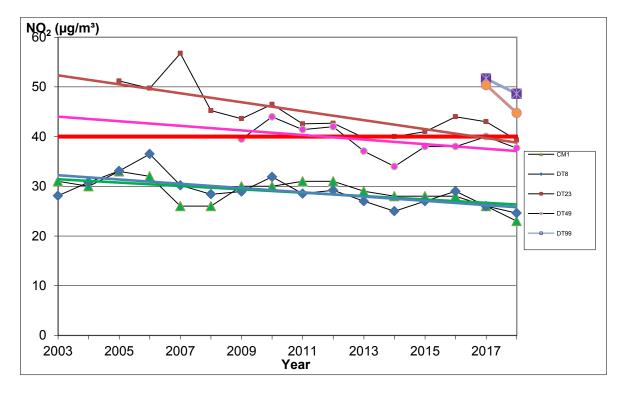

DT84 is considered worst-case and is located at the junction of the A50 (Waterloo Road) and the B5051 (Moorland Road) adjacent to a building with no residential use. The remaining tubes in this area are located near to buildings with commercial use at ground floor and residential use at the first floor. All concentrations were below the objective, however, DT29, DT84 and DT85 were all within 10% of the objective.

Figure A. 5 – Graph of Annual Mean NO₂ Concentrations – Cobridge

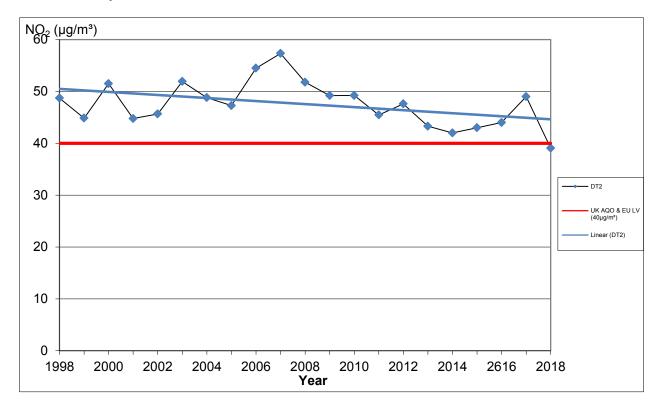
Locations of diffusion tubes are shown in Figures D. 9, D. 10 and D. 11.

There is a general downward trend in this area. However, concentration for DT9 remains above the objective. Tube DT91 is located closer to the road than the nearest residential property. Distance correction at this site results in a concentration at the façade of the property of $39 \ \mu g/m^3$ and is therefore below the objective. DT89 is also closer to the road that the property. The distance corrected result was $28 \ \mu g/m^3$.


Figure A. 6 – Graph of Annual Mean NO₂ Concentrations - Hanley

The Location of continuous monitor CM1 and co-located diffusion tube DT8 are shown on Figure D. 2. DT23, DT99 and DT100 are shown in Figure D. 12 and DT49 is shown on Figure D. 13.

There is a general downward trend seen at both urban background and roadside locations in this area.


DT23, DT99 and DT100 are located near to the junction of the A5008 (Bucknall New Road) and the A50 ring road (Potteries Way). DT99 is located adjacent to a residential property and shows an exceedance of the objective. DT23 and DT100 are adjacent to commercial properties, therefore the objective does not apply. However, if the buildings were converted to residential use, the objective would apply.

DT49 is located at the junction of the A50 (Lichfield Street and Derby Street). A new residential development is currently under construction here. Monitoring indicates that the concentration is likely to be within 10% of the objection.

Figure A. 7 - Graph of Annual Mean NO₂ Concentrations – Bucknall

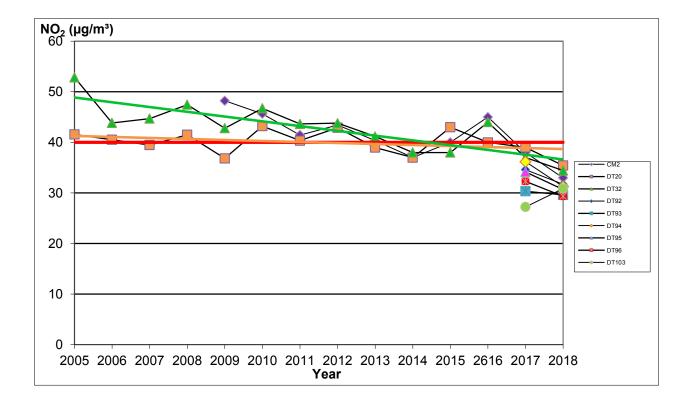
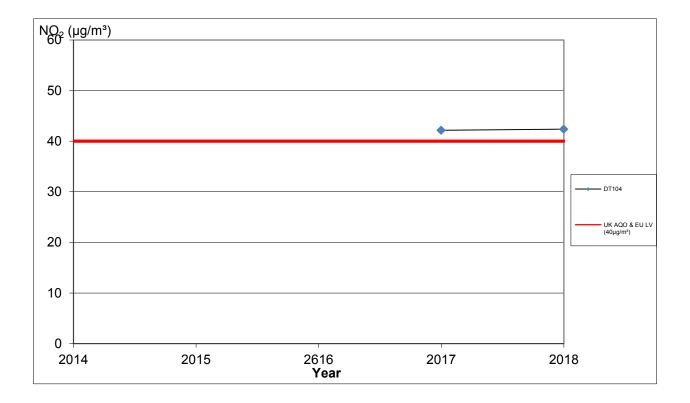
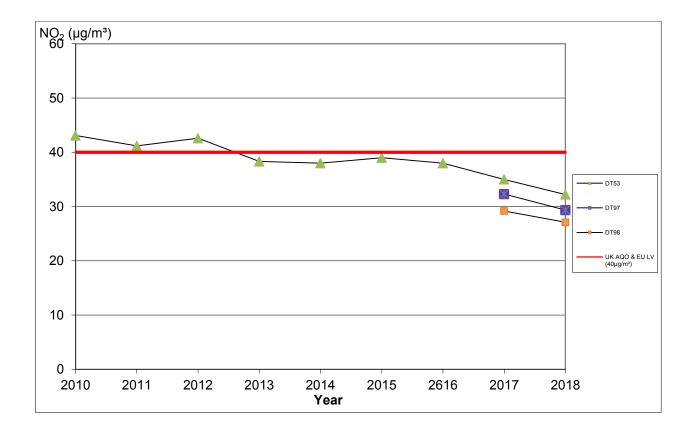

The location of DT2 is shown in Figure D. 14. The tube is located adjacent to residential properties at the junction of the A5272 (Dividy Road) and the A52 (Werrington Road). There has been a downward trend at this site over time, but concentrations have been inconsistent at this location. Though the 2018 result is below the objective, it remains within 10% of it.

Figure A. 8 - Graph of Annual Mean NO₂ Concentrations – Leek Road, Joiners Square to Stoke


The locations of tubes are shown on Figures D. 15, D. 16, D. 17, D. 18 and D. 19.

Long-term monitoring shows a downward trend in this area. 2018 results show that all monitoring locations are significantly below the objective. Most sites are located closer to the road than the nearest residential property, therefore concentrations at the properties will be lower than those shown.


Figure A. 9 - Graph of Annual Mean NO₂ Concentrations – Station Road The diffusion tube location is shown on Figure D. 20.

No trend data is available, as monitoring has only been carried out at this location for two years. The monitoring point is located outside Stoke-on-Trent Railway Station and therefore is not representative of residential property. The concentration has remained significantly below 60 μ g/m³ and therefore the hourly mean objective is unlikely to be exceeded here.

Figure A. 10 - Graph of Annual Mean NO₂ Concentrations – College Road The locations of tubes are shown on Figure D. 21 and D. 22.

All results are significantly below the objective. DT97 is not representative of residential property, but was set up with DT98 to assess whether pollutant levels were high, as this road is used by buses travelling between the railway station and the city-centre.

Figure A. 11- Graph of Annual Mean NO₂ Concentrations – A53 (Etruria Road)

The locations of tubes are shown on Figure D. 23, D. 24, D. 25 and D. 26.

Trend analysis shows a slight downward trend in concentrations.

Monitoring at DT105 and DT106 began in 2018, therefore no trend data is available. These two sites were set up to monitor concentrations to the east of the A500, at a stretch of road that Defra's Pollution Climate Mapping (PCM) model had identified as exceeding the EU limit value. The tubes were located adjacent to the road and near to bus stops to represent worst-case locations. The results show that concentrations at both locations are below the EU limit value.

Concentrations at DT51, adjacent to the A500/Etruria Road roundabout remain below the objective, but within borderline values.

All other monitoring sites remain above the objective even after appropriate distance correction has been applied.

This area is the main focus for work being carried out under the Ministerial Directions issued to Stoke-on-Trent City Council and Newcastle-under-Lyme Borough Council to investigate actions to bring forward compliance with the EU limit value in the shortest possible time.

The concentration at DT17 remains above 60µg/m³ and therefore indicates that the hourly mean objective is likely to be exceeded at this location.


Figure A. 12 - Graph of Annual Mean NO₂ Concentrations – Victoria Street & Shelton New Road

A map of monitoring locations can be found at Figure D. 25, D. 27, D. 28 and D. 29.

No trend data is available here, as monitoring has only been undertaken for three years for DT63, DT64, DT65, DT66 and DT67 and for two years for DT72 and DT73.

These monitoring points were set up for the work being undertaken in support of the Ministerial Direction, as action taken on the A53 may result in traffic using alternative routes, such as Shelton New Road and Hartshill Road.

DT63 and DT67 both continued to exceed the objective. All other monitoring locations were below the objective, though DT64 and DT65 remained above 36 μ g/m³ and therefore borderline.

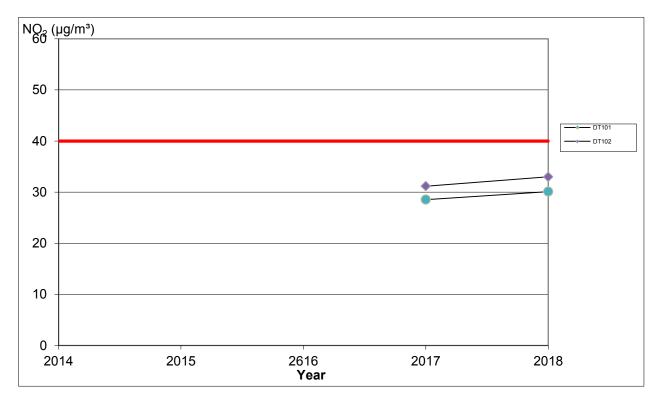


Figure A. 13 - Graph of Annual Mean NO₂ Concentrations – Hartshill Road A map of monitoring locations can be found at Figure D. 29 and D. 30.

No trend data is available as monitoring has only been completed for two years.

Concentrations at both sites remain below the objective.

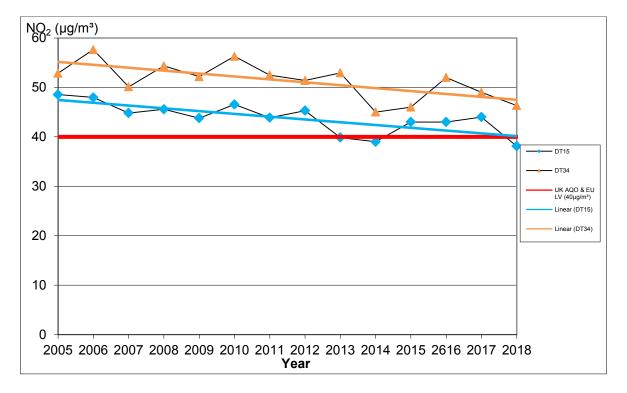

These monitoring points were set up for the work being undertaken in support of the Ministerial Direction, as action taken on the A53 may result in traffic using alternative routes, such as Shelton New Road and Hartshill Road.

Figure A. 14 - Graph of Annual Mean NO₂ Concentrations – Victoria Road Maps of monitoring locations can be found at Figure D. 31 and D. 32.

A downward trend is shown in this area. However, the concentration at DT34 remains above the objective and at DT15, it remains borderline at 38 μ g/m³.

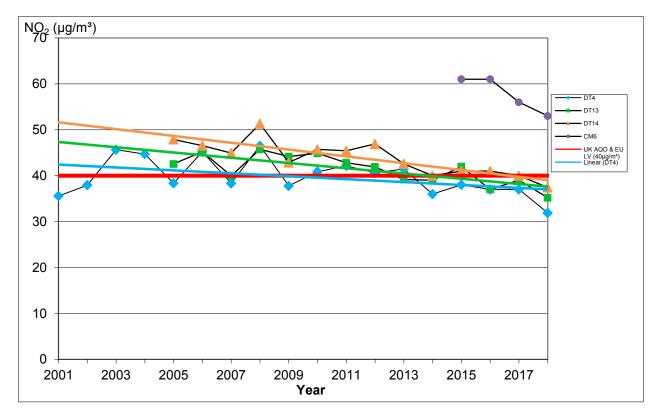
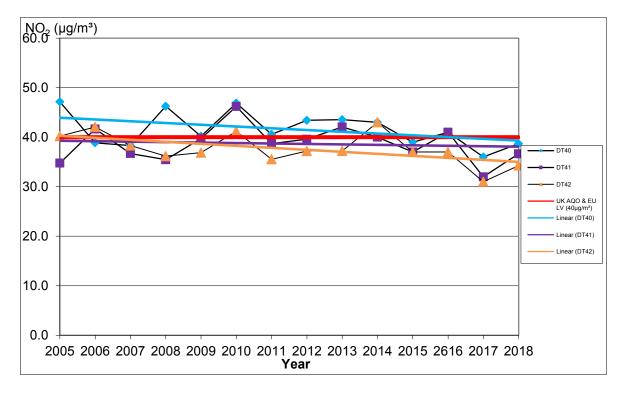

Victoria Street forms part of the A50 and links the A50 trunk road with the citycentre. The road is a main bus route linking the city-centre with the southern areas of the city. To the north of the monitoring sites are commercial and industrial areas which are served by HGVs using Victoria Road. The road is narrow with terraced properties to the back of pavement.

Figure A. 15 - Graph of Annual Mean NO₂ Concentrations – north of A50 Meir A map of monitoring locations can be found at Figure D. 33 and D. 34.


The graph shows a downward trend in this area with all diffusion tube concentrations being below the objective. All monitors are located on Railway Road, which runs parallel to the A50 trunk road. DT4 is located at the façade of a property, but DT13 and DT14 are located closer the kerb of Railway Road and closer to the A50 than the nearest residential property and therefor the concentrations at the façades are likely to be lower than those shown.

CM6 is a continuous monitor located between the A50 trunk road and Railway Road. It is part of the Automatic Urban and Rural Network (AURN). Monitoring here remains significantly above 40 μ g/m³, but all residential properties are located further away from the monitoring site.

Figure A. 16 - Graph of Annual Mean NO₂ Concentrations – south of A50 Meir A map of monitoring locations can be found at Figure D. 34.

The graph shows a downward trend in this area with all diffusion tube concentrations being below the objective. However, some remain at borderline concentrations. DT40 and DT41 are a similar distance from the A50 trunk road as the nearby residential properties, but DT42 is closer to the road than the nearest house.

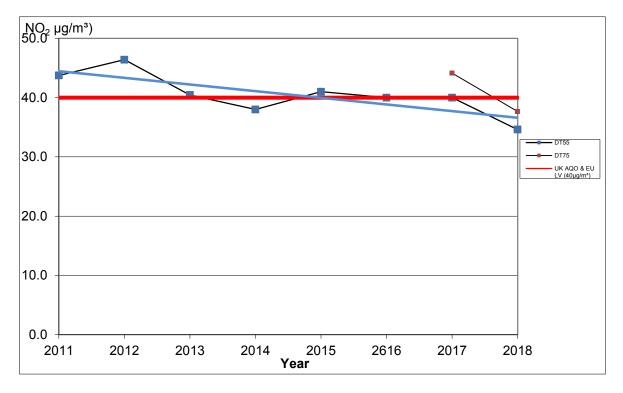


Figure A. 17 - Graph of Annual Mean NO₂ Concentrations – Uttoxeter Road, east of the Meir tunnel

A map of monitoring locations can be found at Figure D. 35.

The graph shows a downward trend in this area.

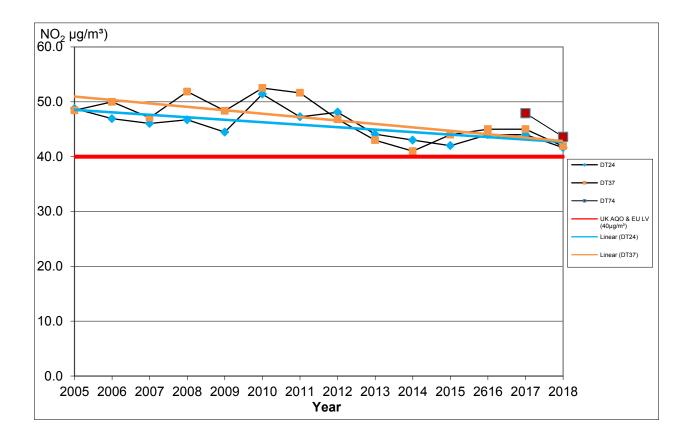

DT55 is a similar distance from Uttoxeter Road and the A50 trunk road at the nearby property. DT75 is closer to the road than the nearest property. Distance correction for this tube results is a concentration of 31 μ g/m³. Results for both diffusion tube locations are below the objective.

Figure A. 18 - Graph of Annual Mean NO₂ Concentrations – Weston Road, Meir

A map of monitoring locations can be found at Figure D. 36.

The graph shows a downward trend in this area. However, concentrations remain above 40 μ g/m³ at all three locations. DT24 is located on a commercial property with residential accommodation above. There are a number of shops on either side of Weston Road at this location. In addition there is a pedestrian crossing adjacent to the property where the diffusion tube is sited, resulting in stop/start traffic for much of the day. DT37 is also located on a commercial property with residential above. DT74 is located closer to the road than the nearby residential property. Distance correction for this site resulted in a concentrations of 40 μ g/m³ and therefore though the objective is not exceeded, it is classed as borderline.

Table A.4 – 1-Hour Mean NO₂ Monitoring Results

Site ID	Site Type	Monitoring Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture	N	NO ₂ 1-Hour Means > 200µg/m ^{3 (}			
				2018 (%) ⁽²⁾	2014	2015	2016	2017	2018
CM1	Urban Background	Automatic	98	98	0	0	0	0	0
CM2	Roadside	Automatic	96	96	0 (124)	1	0 (127)	0	0
CM5	Roadside	Automatic	85	85	4	0	2 (160)	2	3
CM6	Roadside	Automatic	98	98	-	3 (179)	12	4	1

Notes:

Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets.

-

-

-

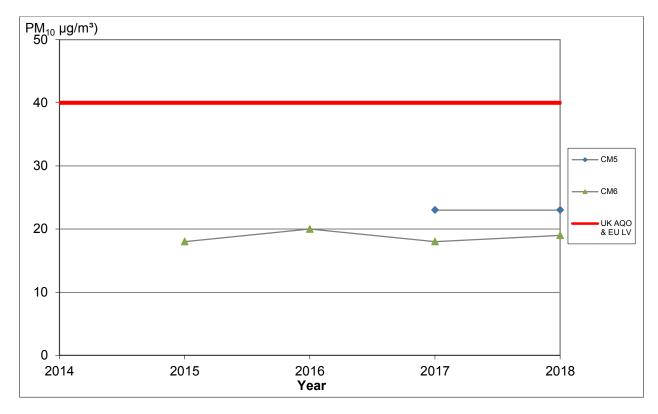
PM_{10} Annual Mean Concentration (μ g/m³) ⁽³⁾ Valid Data Capture 2018 (%) ⁽²⁾ Valid Data Capture for Site Type Monitoring Period (%)⁽¹⁾ 2014 2015 2016 2017 2018 Urban CM1 Decommissioned 2015 NA 18 17 _ Centre CM3 Roadside Decommissioned 2015 NA 24 22 --CM4 Decommissioned 2013 NA Industrial ----CM5 85 23 Roadside 85 23 ---95 CM6 Roadside 95 18 19 18 20 -

Table A.5 – Annual Mean PM₁₀ Monitoring Results

☑ Annualisation has been conducted where data capture is <75%

Notes:

Exceedances of the PM_{10} annual mean objective of $40\mu g/m^3$ are shown in **bold**.


(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Figure A. 19 – Trends in Annual Mean PM₁₀ Concentrations

No trend analysis is available as only four years of data is available. However, the annual mean concentration at both monitoring sites is significantly below the objective.

Site ID	Site Type	Valid Data Capture for Monitoring Period (%) ⁽¹⁾	Valid Data Capture	РМ	₁₀ 24-Hou	ır Means	> 50µg/m	3 (3)
Site ib	Site Type	Period (%) ⁽¹⁾	2018 (%) ⁽²⁾	2014	2015	2016	2017	2018
CM1	Urban Centre	Decommissioned 2015	NA	8	0 (29)	-	-	
CM3	Roadside	Decommissioned 2015	NA	15	7	-	-	-
CM4	Industrial	Decommissioned 2013	NA	-	-	-	-	-
CM5	Roadside	85	85	-	-	-	10	0
CM6	Roadside	95	95	-	1 (29)	5	3	1

Table A.6 – 24-Hour Mean PM₁₀ Monitoring Results

Notes:

Exceedances of the PM_{10} 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times/year) are shown in **bold**.

(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

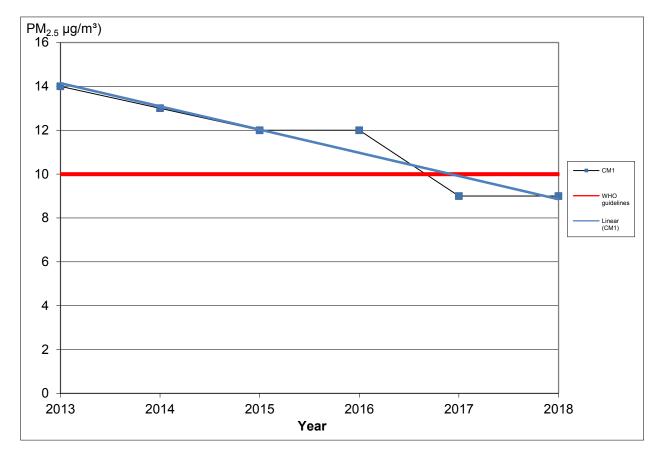
(3) If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets.

Table A.7 – PM_{2.5} Monitoring Results

Site ID	Site Type	Valid Data Capture for Monitoring	Valid Data Capture	PM _{2.5}	Annual Me	an Concen	tration (µg/	m ³) ⁽³⁾
		Period (%) ⁽¹⁾	2018 (%) ⁽²⁾	2014	2015	2016	2017	2018
CM1	Urban Centre	92	92	13	12	12	9	9

☑ Annualisation has been conducted where data capture is <75%

Notes:


(1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

(2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).

(3) All means have been "annualised" as per Boxes 7.9 and 7.10 in LAQM.TG16, valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Figure A. 20 – Trends in Annual Mean PM_{2.5} Concentrations

A downward trend is shown for $PM_{2.5}$ monitoring. The annual mean concentration has remained below the WHO guidelines for the second year.

Appendix B: Full Monthly Diffusion Tube Results for 2018

Table B.1 – NO2 Monthly Diffusion Tube Results - 2018

							NO₂ Mea	n Concen	trations (µ	ıg/m³)					
														Annual Mea	n
Site ID	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted (0.87) and Annualised	Distance Corrected to Nearest Exposure
DT1	27.9	26.3	23.9	20.8	15.6	14.5	17.5	14.8	20.1	23.4	24.0	23.7	21.0	18.3	
DT2	62.0	49.4	39.5	42.9	44.5	41.6	50.1	42.5	45.8	40.0	39.2	41.4	44.9	39.1	38.9
DT3	29.2	24.5	20.3	15.9	9.5	10.9	14.3	13.8	23	21.2	21.5	19.6	18.6	16.2	
DT4	43.6	38.3	38.5	35.9	33.3	30.3	38.5	36.2	33.9	41.7	33.1	36.6	36.7	31.9	31.3
DT8A	30.5	34.2	27.6	24.1	25.2	20.7	28	26.2	27.7	31.5	28.2	31.2	27.9	24.3	26.4
DT8B	35.1	34.2	27.5	25	24.4	18.5	28.8	25.9	28.6	29.8	28.2	33.2	28.3	24.6	26.4
DT8C	35.2	33.8	26.3	26.4	22.8	20.3	28.1	27.1	29.1	32.8	28.7	31.7	28.5	24.8	26.4
DT9	63.7	54.5	49.1	49.7	46.9	43.6	55.9	50.7	58	41.2	48.7	56	51.5	44.8	
DT10	42.9	40.2	39.5	38.9	42.1	38.6	40.5	36.6	41.9	47.5	34	38.6	40.1	34.9	
DT13	46.9	42.8	39.6	42.5	37.9	34.5	35.1	35.4	39.5	46.4	39.3	45.6	40.5	35.2	
DT14	46.5	44.8	39.6	46.4	41.6	36.6	35.4	39.2	38.6	43.5	57.6	46.7	43.0	37.4	
DT15	53.6	47	43.5	I/S	40.4	34.6	47.9	43.5	41.5	46.5	34.4	48.8	43.8	38.1	
DT16	63.6	62.4	58.2	57.9	57.1	49	58.1	53.9	58.2	54	49.5	59.8	56.8	49.4	
DT17	92.3	83.5	86.1	55.8	I/S	84.8	91.1	I/S	87.4	73.9	85	93.4	83.3	<u>72.5</u>	<u>67.9</u>
DT20	50.1	48.7	36	35.9	30.3	34.6	36	35.5	44.2	49	39	49.3	40.7	35.4	
DT23	50.7	48.3	44.5	41.8	44.9	40.6	49.9	40.7	51.3	I/S	39.2	I/S	45.2	39.3	

DT24	46.6	48.5	I/S	47.1	53	43.6	54.5	46.7	48.3	52.6	40.4	45.1	47.9	41.6	
DT29	53.1	47.2	42.6	45.7	I/S	34.7	44.5	40.4	43.8	45.7	45.1	42.7	44.1	38.4	
DT32	46	43.7	38.3	41.2	41.6	37.9	35	29.7	34.7	43.9	41.4	41.6	39.6	34.4	31.6
DT34	56.8	58.5	56.6	52.9	54.6	52.8	54.3	38.8	47.9	59.8	60	46.1	53.3	46.3	
DT37	53.4	54.7	44.4	51	47.4	42	48.1	42.1	45.3	51.7	48.5	49.6	48.2	41.9	
DT40	41.7	52.3	53	47.9	53.5	51.3	41.5	31.8	28.4	43.3	49.8	39.1	44.5	38.7	
DT41	40.3	52.7	53.7	47.2	50.4	48.9	40.9	28.8	26.2	38.8	38.3	39.4	42.1	36.7	
DT42	32.4	47	46	42.6	48.8	40.2	39.8	28.7	28.1	44.2	35	39.9	39.4	34.3	
DT49	52	48.9	42.3	38.4	32.3	31.6	44.8	41.5	44.3	51.7	41.4	50.6	43.3	37.7	
DT51	46.5	53.5	41.3	45.7	51.2	45.4	44.3	37.3	39.6	49.5	43	37.2	44.5	38.8	37.4
DT52	58.2	60.2	56.2	63.1	56.4	49.8	I/S	I/S	52.2	49.4	51.2	53.6	55.0	47.9	43.7
DT53	42.3	43.8	36.3	36.8	33.3	27.5	31.1	31.5	40.8	41.5	36.9	42.7	37.0	32.2	
DT55	48.3	45.3	40.7	42.1	31.4	31.2	35.7	35.9	38.6	41.7	44.5	41.9	39.8	34.6	
DT56A	62.3	59.9	52.5	60.1	57.2	45.4	54.3	46.7	48.5	57.3	56.2	52.1	54.4	47.3	42.4
DT56B	63.6	64.5	52.9	91.1	56.5	44.7	58	50.5	50.4	58.9	62.2	55.9	59.1	51.4	42.4
DT56C	64.7	64.1	55.8	63.7	63.1	48	53.7	52.7	53.7	60.4	51.3	55.1	57.2	49.8	42.4
DT61	47.3	44.5	36.1	39.1	39.9	34.6	43.1	32.7	I/S	41.9	36.7	46.4	40.2	40.2	
DT63	66	58.9	55.1	55.2	58.5	53.2	60.9	56.3	61.4	63.1	45.9	69.9	58.7	51.1	
DT64	45.7	46.9	45.2	42.5	I/S	27.2	37.4	I/S	37.5	42.3	45.1	49.2	41.9	36.5	34.4
DT65	I/S	I/S	I/S	40.1	34.5	32.2	44.4	38.2	46.1	50.8	40	53.9	42.2	36.8	
DT66	40.9	43	37.2	32.8	28	24.3	29.7	29.3	33	39.1	32.8	42.3	34.4	29.9	
DT67	67.1	57.9	39.8	53	55.8	93.6	56.4	42.7	42.7	57.5	52.3	52	55.9	48.6	43.5
DT72	43.8	44.6	44	44	< 1.0	44.4	40.1	25.5	29.1	40.3	44.4	42.5	40.2	35.0	32.4
DT73	45.5	41.8	36.4	34.8	32.8	27.1	36	29.8	33.8	38.8	35.9	45	36.5	31.7	
DT74	56.4	55.4	45.8	49.6	50.5	46.9	52.5	50.3	49.4	47.2	44.9	52.4	50.1	43.6	39.9
DT75	51.9	44.7	43.2	51.5	32.8	31.9	39.6	43	47.5	40.6	40.6	52	43.3	37.6	31.2
DT76	48.6	45.2	44.8	43.6	40.2	44.2	37.8	33.7	37.9	45.3	49.1	39.1	42.5	36.9	35.0

DT77	I/S	57.5	44.6	53.9	59.5	54.6	58.7	43.7	49	65.2	57.5	59.2	54.9	47.7	39.3
DT78	53.2	48.4	45.3	41.4	38.7	38	46.3	38.7	44	42.2	42.8	50.4	44.1	38.4	
DT79	51.3	48.3	46.7	41.8	36.3	33.9	45.8	38.5	39.8	46.2	42.9	49.7	43.4	37.8	
DT80	44.8	42.6	37.2	37.1	34.5	30.7	35.9	30.8	32.1	36.1	40.6	36.3	36.6	31.8	
DT81	43.3	42.4	38.2	37	36.1	34.6	40.1	34.1	38.9	43.6	35.2	45.4	39.1	34.0	31.4
DT82	44.2	39.9	37.1	37.6	38.5	33	37.4	34.5	35.6	40.5	35.3	44.5	38.2	33.2	
DT83	45.6	49.1	39.5	39.6	40.7	I/S	45.9	34.9	41.5	46.5	31.8	47.3	42.0	36.6	33.3
DT84	45.4	48.7	39.3	40.4	43.3	42.9	45.8	36.7	42.6	44.8	33.1	38.4	41.8	36.4	35.7
DT85	< 1.0	76.2	I/S	37.4	38.3	36.6	36.6	32.7	36.5	41.6	39.2	46.1	42.1	36.6	
DT86	49.6	43.8	41.5	39.2	35.2	33.1	40.6	39	40.4	40.6	40.7	46.9	40.9	35.6	
DT88	40.7	39.5	28.3	35.2	31.6	28.3	37.6	30	33.7	37.3	31.4	46.3	35.0	30.4	28.0
DT89	49.6	42.2	36.2	38.8	37.1	32.1	I/S	I/S	45.3	48.4	45.2	49.5	42.4	36.9	28.3
DT90	46.5	45.5	38.7	38.8	45	40.8	43.3	31.9	34.5	37.3	41.7	41.1	40.4	35.2	
DT91	59.4	47.2	48	I/S	I/S	I/S	52.9	46.8	53.6	47.8	40.4	53.2	49.9	43.4	39.1
DT92	42.8	42.7	35.6	32.1	35.4	32.9	30.9	31.1	33.6	45.9	37.5	37.1	36.5	31.7	
DT93	43.1	41.2	33.8	32.1	32.5	30.5	29.3	27.1	29.5	39.1	39.1	31.4	34.1	29.6	27.8
DT94	51.1	45.3	40.4	32.9	24.8	25	30.8	29.4	38.5	37.2	36.2	39.6	35.9	31.3	30.0
DT95	47.7	40.5	35.5	35.8	30.3	25.6	30.6	26.1	32.1	41.7	38.2	39.1	35.3	30.7	28.6
DT96	45	41.5	32	30.6	28.4	19.6	31.2	29.1	32.7	37.8	34.8	42.1	33.7	29.3	27.6
DT97	45.3	41.9	31.6	34.9	18.4	25	30.9	26.8	31.9	38.1	41.4	44.3	34.2	29.8	
DT98	37.6	34.6	31.6	27.6	27.4	25.5	29.3	25.5	29.5	36.2	30.8	38.4	31.2	27.1	25.5
DT99	56.4	56.1	54.5	57.8	64.1	58	63.1	47.7	59.5	I/S	41	56.5	55.9	48.6	
DT100	61	13.2	I/S	I/S	63	53.9	61.9	50.7	59.3	52.4	47.6	I/S	51.4	44.8	
DT101	37.7	39.9	38.2	33	37.9	33.6	I/S	26.1	26.5	38.2	33.8	35.8	34.6	30.1	
DT102	42.2	42.1	41.7	34.6	41.2	37	29.4	29.6	36.2	39.8	36.6	44.9	37.9	33.0	
DT103A	43	39.5	33.6	33.6	31.4	28.7	31.7	33.4	36.8	40.5	39	44.1	36.3	31.6	
DT103B	46.1	40.6	36.9	34.9	31.4	30.7	37.6	28.8	32	39.2	33.4	40	36.0	31.3	

DT103C	40.5	38.5	29.8	33.9	34.5	32.8	31.6	29	33.4	30.1	38	38.3	34.2	29.8	
DT104	56.9	52	47.1	43.5	43.3	39.1	50.1	43.1	54.5	56.5	40.3	58	48.7	42.4	
DT105	N/A	N/A	38.5	40.3	31.9	29.7	38.3	34.6	43.3	44.6	39.6	52	39.3	34.2	
DT105	N/A	N/A	43.3	39.1	35.4	31.8	37.1	33.3	40.1	40.7	41.3	37	37.9	33.3	

□ Local bias adjustment factor used

☑ National bias adjustment factor used

Annualisation has been conducted where data capture is <75%

☑ Where applicable, data has been distance corrected for relevant exposure

Notes:

Exceedances of the NO₂ annual mean objective of $40\mu g/m^3$ are shown in **bold**.

NO₂ annual means exceeding 60µg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

(1) See Appendix C for details on bias adjustment and annualisation.

(2) Distance corrected to nearest relevant public exposure.

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

C1 Changes to sources

There have been no changes to sources that would require in changes to the AQMA boundary.

Several air quality assessments were submitted in support of planning applications and are listed with appropriate link below. None were shown to be significantly detrimental to air quality.

No air quality assessment concluded that there would be a detrimental effect on air quality, due to increased emissions.

Planning application **61804/FUL**, **62832/FUL** and **63229/FUL** were each likely to introduce residents into an area of poor air quality. The applicant in each case has agreed to the mitigation measure of installing forced ventilation to the affected rooms.

61768/FUL for a link road through Etruria Valley is expected to offer mitigation and reduce concentrations of NO_2 in the EU limit value non-compliant area of the A53. Updated modelling will be submitted in the Ministerial Direction Local Plan work that is currently underway.

62102/OUT Residential and commercial development including car park (outline) and demolition of existing building, Land at Pyenest Street, Shelton, Stoke-on-Trent https://planning.stoke.gov.uk/online-

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _68015

61768/FUL Construction of a new highway link road comprising improvements to the Wolstanton roundabouts, construction of a new viaduct over Fowlea Brook and the West Coast Mainline railway, connections between Shelton Boulevard and Newport Lane including replacement bridge over the Trent and Mersey Canal (and new bus gate to south of the bridge), new connection between Shelton Boulevard and Festival Way including new bridge over the Trent and Mersey Canal, off-site improvements (at Grange Lane/Church Lane, Newport Lane and Festival Way/Marina Way/Ridgehouse Drive), new landscaping and associated works (Cross boundary application) Land to the north of Shelton Boulevard, the south of Newport Lane and

in-between Festival Way and the A500 (Queensway), Stoke-on-Trent <u>https://planning.stoke.gov.uk/online-</u>

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _67681

61804/FUL Erection of one hundred and twenty-eight dwellings including associated access, parking and landscaping Land between Lichfield Street and Eastwood Road, Hanley, Stoke-on-Trent

The air quality assessment submitted in support of this application concluded that Blocks 2 and 3 may introduce residents into an area of poor air quality. The applicant stated that site constraints would prevent building further from the road, therefore it was agreed that mitigation in the form of forced ventilation would be provided in rooms at or below 4.6 m elevation from the road on Derby or Lichfield Street, and that the air intake would be sited on the furthest façade from the roads.

https://planning.stoke.gov.uk/online-

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _67717

61884/HYB Hybrid application (part full, part outline): Full application for a four-pump Petrol Filling Station, 'drive-to' pay kiosk including new access, road works and associated landscaping. Outline application for a 'drive-through' restaurant (Use Class A3/A5) Land at junction of Williamson Street and Scotia Road, Tunstall, Stokeon-Trent, ST6 6AS <u>https://planning.stoke.gov.uk/online-</u>

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _67797

62252/MAS Erection of dwellings Land adjacent to Bourne Street, Derry Street and Tweed Street, Heron Cross, Stoke-on-Trent <u>https://planning.stoke.gov.uk/online-</u> applications/applicationDetails.do?activeTab=documents&keyVal= STOKE DCAPR 68165

62288/FUL Erection of employment building (B1(c) B2 or B8 use) with ancillary office area, associated vehicle parking and turning, landscaping, access from Shelton Boulevard and external works Etruria Valley, Shelton Boulevard, Etruria, Stoke-on-Trent, ST1 5GR <u>https://planning.stoke.gov.uk/online-</u>

applications/applicationDetails.do?activeTab=documents&keyVal= STOKE DCAPR ______68201

62547/FUL Full permission for development of two warehouse buildings (Use Class B8) with ancillary offices and external works including parking and servicing, boundary treatments including acoustic fence, drainage and hard/soft landscaping. Land at Whittle Road, Meir Park, Stoke-on-Trent, St3 7UN

https://planning.stoke.gov.uk/online-

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR __68462

62706/FUL Change of use to create 6 residential units 6 Jasper Street, Hanley, Stoke-on-Trent, ST1 3DA <u>https://planning.stoke.gov.uk/online-</u> <u>applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR_68621</u>

62832/FUL Change of use to 10 bedroom house of multiple occupation Wagon and Horses, 691 Dividy Road, Bentilee, Stoke-on-Trent, ST2 0AH

The change of use to housing may introduce residents into an area of poor air quality. However, the applicant is required to mitigate in the form of forced ventilation to rooms with a façade on Dividy Road, with the inlet to the ventilation being at the rear of the property. <u>https://planning.stoke.gov.uk/online-</u>

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR __68747

62880/OUT Demolition of existing buildings and residential redevelopment (outline) Platinum UK Homes Improvements Ltd, 35 King Street, Stoke-on-Trent, ST4 3LZ https://planning.stoke.gov.uk/online-

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR __68795

62889/HYB Hybrid application (part full / part outline): Full application for the erection of 29 dwellings including landscaping, open space and access (including alterations) from New Inn Lane. Outline application for residential development of up to 471 dwellings, primary school, vehicular access from New Inn Lane and Kings Road, associated landscaping, open space and biodiversity enhancements (including woodland, parkland and wetland), associated infrastructure works including off-site

highway improvements at New Inn Lane, Kings Road, and the junctions of Mayne Street, Stone Road and the A500 Hanford Roundabout Land at New Inn Lane, Hanford, Stoke-on-Trent ST4 8EX <u>https://planning.stoke.gov.uk/online-</u> <u>applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR</u> <u>_68804</u>

63033/FUL Installation of 'intermittent' kiln including 3m high external kiln stack Churchill China, Marlborough Works, Sandyford, Stoke-on-Trent, ST6 5PB <u>https://planning.stoke.gov.uk/online-</u>

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _68948

63095/FUL Partial demolition of workshop building and construction of sixty-five apartments with communal facilities, twenty-eight dwellings, ancillary gardens and parking Former Workshops for the Blind, City Road, Fenton, Stoke-on-Trent ST4 2PL https://planning.stoke.gov.uk/online-

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _69010

63096/FUL Demolition of Local Centre buildings and erection of two three-storey apartment blocks (forty-two units in total) with associated car parking, reconfiguration of car park to provide market facilities including WCs, office space and storage Former Fenton Local Centre and car park, Baker Street, Fenton, Stoke-on-Trent ST4 3AF https://planning.stoke.gov.uk/online-

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR _69011

63224/FUL Construction and operation of a gas powered stand-by electricity generation facility comprising four gas powered generators with 5m high exhaust stacks, containerised switch room, 'DNO' room, welfare, storage and parking facilities, acoustic fencing and gates in lieu of the Diesel 20MW STOR scheme approved under planning permission ref. 58734/FUL Land adjacent to Outclough Farm, Chatterley Whitfield, Stoke-on-Trent, ST6 8UW

https://planning.stoke.gov.uk/online-

<u>applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR</u> 69139

63229/FUL Change of use to 9 one-bedroomed self-contained flats Victoria Road Methodist Church, Victoria Road, Fenton, Stoke-on-Trent

The change of use to housing may introduce residents into an area of poor air quality. However, there are existing residential properties next to the application site.

The applicant agreed mitigation in the form of forced ventilation to rooms with a façade on Victoria Road, with the inlet to the ventilation being at the rear of the property. <u>https://planning.stoke.gov.uk/online-</u>

applications/applicationDetails.do?activeTab=documents&keyVal=_STOKE_DCAPR __69144

63621/FUL Demolition of existing buildings and erection of a food store (Use Class A1) with access and associated parking Land at Cobridge Road, Hanley, Stoke-on-Trent <u>https://planning.stoke.gov.uk/online-</u>

applications/simpleSearchResults.do?action=firstPage

C2 Monitoring/Modelling conclusions

Monitoring has shown that the UK AQO is exceeded in some areas of the city. The current AQMA covers the whole of the city, therefore modelling and monitoring completed since the last report have not shown a requirement for the AQMA to be amended or revoked.

C3 QA/QC

Automatic monitors

Servicing

The council owned monitors are serviced every six months by a reputable service provider, in accordance with LAQM TG (16) paragraph 7.173.

Calibrations

Calibration of nitrogen dioxide analysers are carried out fortnightly by Stoke-on-Trent City Council personnel in accordance with Defra guidance LAQM TG (16) paragraph 7.171

Data management

Data management was carried by Stoke-on-Trent City Council in accordance with Defra guidance LAQM TG (16) paragraphs 7.174 to 7.178. Data from automatic

monitors was collected daily via modems and stored in a database on a central server using Envitech Europe Ltd Envista ARM software. During Daily Checks, Validation, Rescaling and Ratification procedures, all changes were recorded in a data review log together with comments and justification for any changes made.

Daily Checks

The following checks are carried out:

- Has data been polled since the previous check was carried out?
- Has an LSO calibration or engineer's calibration been completed since the previous check was carried out: if so, invalidate NOx, NO & NO₂ for time period of zero and span.
- TEOM filter change: invalidate PM₁₀ data 60 minutes from the start time of the filter change.
- Overnight zero: check that the value is no greater than 4 ppb compared to the previous day.
- Overnight span: NO₂ data should not change by more than 5% from previous day.
- Missing data: attempt a manual poll of data.
- Data Screening: does data follow a typical trend? If it does not, investigate possible reasons why. Decide whether to invalidate data and/or whether a call-out to the service provider is needed.

Quarterly Review

Validation

Data is reviewed quarterly to identify, log and invalidate anomalous data. Suspected anomalous data is compared to data from other monitors in the city, including the AURN Stoke-on-Trent Centre and AURN Stoke-on-Trent A50 Roadside sites. Anomalous data is invalidated and the reason is recorded in the Validation Log.

Rescaling

LSO calibration data is compared to the cylinder specification to obtain a span correction factor. Correction for zero drift is also carried out. All factors that are applied are recorded with the data set that they are applied to. Rescaling factors are calculated in the following way:

Worked example:

NOx

LSO calibration zero response: 3ppb Cylinder specified concentration: 451 ppb LSO span response: 447 ppb Scaling factor (F) = Cylinder concentration (span-zero) Scaling factor (F) = 451 = 1.0577(447-3) Raw ambient data recorded = 71 ppb Subtract zero (3ppb) = 68 ppb Multiply by scaling factor (1.0577) = 71.92 ppb NO LSO calibration zero response: 2ppb Cylinder specified concentration: 450 ppb LSO span response: 448 ppb Scaling factor (F) = Cylinder concentration (span-zero) Scaling factor (F) = 450 = 1.0090(448-2) Raw ambient data recorded = 59 ppb Subtract zero (2ppb) = 57 ppb Multiply by scaling factor (1.0577) = 57.51 ppb NO₂ NO₂ = rescaled NOx – rescaled NO NO₂ = 71.92 ppb – 57.51 ppb = 14.41 ppb

Conversion factor for NO₂ ppb to μ g/m³ = 1.91

 $NO_2 = 14.41 \text{ x} 1.91 = 27.5 \ \mu\text{g/m}^3$

Ratification

Rescaled data is again reviewed. Any remaining anomalous data is removed. The data is finalised and no further changes are made.

Diffusion tubes

The 2018 national bias adjustment factor for Staffordshire Scientific Services of 0.87 was applied to diffusion tubes. This factor was considered to represent monitoring locations in the city and be consistent with previous reporting. There is good data capture and good laboratory precision. Bias correction factor details are shown in Table C 1 below. The laboratory precision is shown in Table C 2

Annualisation was not required at any monitoring site as data capture was not less than 75%.

Where diffusion tubes were located closer to the road than the nearest property, distance correction has been applied. The calculations are shown in Table C 3.

National Diffusion Tube	Bias Adju	stment	Fac	tor Spreadsheet			Spreads	heet Vers	sion Numbe	or: 03/19
otiow the steps balow in the correct order sta only apply to tubes exposed monthly a Phenever presenting adjusted data, you sh this spiral dissect will be updated every free	r to show the results nd are not suitable t putd state the adjus	of <u>relevant</u> c for correcting it dment factor u	ndwick ped ar	ion studies si short-term monitoring periods id the version of the spreadsheet	courage Their	immediate us			spreadulte lod al the e 2019	
te LAGN Helpdesk is operated on behalf of Def inthers AECOW and the National Physical Labor		dministrations b	y Burn	u Ventas, in conjunction with contract			t by the Nations Ionsultante Ltd		al Laborato	ry. Original
Step 1:	Step 2:	Step 3:			S	tep 4:				
can the Laboratory that Averyana Your Tubes Bare the Orao-Down Lief	Select a Preparation Hethod from The Drist-Down List	Select a Year from the Drose Down Last		here there is only one study for a ch on. Where there is more than one s		Contract of the second second				
a hannan ang ta ang kanang sari karanga dina tar tar tari karantara	a proposition motion in filmone, or have us date or this motion of the filmone, but the	1	ffynu	have your own co-location study then as Helpdesh at LAD					al Air Quaith	Vanagament
Analysed By	Method Inchesencelisten, dasse	Year Tenterer	Site Type	Local Authority	Length of Study (months)	Diffusion Tube Mean Conc. (Dm) (agm ²)	Automatic Monitor Usan Conc. (Cm) (ug/m ³)	Bian (B)	Tube Precision	Bias Adjustmer Factor (A) (Cm/Dm)
affordable Scientific Services	20% TEA In water	2018	LC	Manchester Dity Council	12	37	35	5 0hc	0	0.95
	2001 TEAin water	2018	185	Manchester Dity Council	F		62	-2.3%	G	1.62
affordshire Scientific Services	20.01 10.01 # 20.00			manohester URV Lounde		61				
	200; TEA in water	2010		Manchester Dity Council Manchester City Council	12	23	24	-4.7%	0	1.05
affordative Scientific Services			SI						0	1.05
affordshoe Scientific Services affordshoe Scientific Services	20% TEA in a star	2018	SI R	Manchester City Council	12	23	24	-4.7%		the second s
afordshee Scientific Services afordshee Scientific Services afordshee Scientific Services	20% TEA in water 20% TEA in water	2018 2015	SI R	Manchester CityCouncil BusyCouncil	12 12	23	24 25	-4.7% 19.0%	5	0.84
affordative Scientific Services affordative Scientific Services affordative Scientific Services affordative Scientific Services	20% TEA in a star 20% TEA in a star 20% TEA in a star	2018 2016 2018	SI FI KS	Manchester City Council Bury Council Marylabona Road Intercomparison	12 12 12	23 30 84	24 25 85	-4.7% 19.0% -0.7%	5	0.84
affordshee Scientific Services affordshee Scientific Services affordshee Scientific Services affordshee Scientific Services affordshire Scientific Services	2005 TEA in water 2005 TEA in water 2005 TEA in water 2005 TEA in water	2018 2010 2018 2018	SI R KS R	Manchester City Council Bury Council Marylabone Road Intercomparison Saflord City Council	2 2 2 11	23 30 84 44	24 25 85 40	-4.7% 19.0% -0.7% 10.5%	5 6 6	0.84 1.01 0.31
aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services	205: TEA in a star 205: TEA in water 205: TEA in water 205: TEA in water 205: TEA in water 205: TEA in water	2018 2016 2018 2018 2018 2018	SI R KS R B	Manchester DityCouncil Bus Council Marglebone Road Intecompation Saford Dry Council Saford City Council	2 2 2 11 9	23 30 84 44 18	24 25 85 40 14	-4.7% 19.0% -0.7% 10.5% 24.6%	5 6 6 6	0.04 1.01 0.51 0.80
aftorduhen Scientific Services aftorduhen Scientific Services aftorduhen Scientific Services aftorduhen Scientific Services aftorduhen Scientific Services aftorduhen Scientific Services aftorduhen Scientific Services	201: TEA in a star 201: TEA in a star	2018 2010 2018 2018 2018 2018 2018	SI R KS R B UD R	Manchester City Council Buo Council Marylebone Road Intercompation Salitor (City Council Salitor (City Council Salitor (City Council	2 2 11 9 2	23 30 84 44 18 30	24 25 85 40 14 25	-4.7% 19.0% -0.7% 19.5% 24.6% 19.0%	00000	0.04 1.01 0.31 0.80 0.05
aftodahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services aftordahan Scientific Services	205; TEA in water 205; TEA in water	2018 2010 2018 2015 2016 2018 2016 2018	SI R KS R B UD R	Manchester City Council Boy Council Maglebone Road Intercompation Safet City Council Safet City Council Safet City Council Safet City Council Safet City Council	2 2 11 3 2 2	23 30 84 44 18 30 43	24 25 85 40 14 25 37	-4.7% 19.0% -0.7% 19.5% 24.6% 19.0% 15.6%	5 5 5 5 5	0.84 1.01 0.31 0.80 0.85 0.87
aftordulves Scientific Sendores affordulves Scientific Sendores affordulves Scientific Sendores affordulves Scientific Sendores affordulve Scientific Sendores affordulve Scientific Sendores affordulve Scientific Sendores affordulve Scientific Sendores affordulve Scientific Sendores	2011 TEA in water 2011 TEA in water 2012 TEA in water 2011 TEA in water 2012 TEA in water 2012 TEA in water 2012 TEA in water 2013 TEA in water 2013 TEA in water	2018 2015 2015 2016 2016 2018 2016 2018 2018	SI R KS R B UB R KS	Marchenes Dy Dounol Buy Council Multikenes Boad Intercompation Salest Dry Council Salest Dry Council Salest Dry Council Salest Dry Council Inteligent Others Council	2 2 11 3 2 2 2 2 2	23 30 84 44 18 30 43 30	24 85 85 85 85 85 85 85 85 85 85 85 85 85	-4.7% 19.0% -0.7% 10.5% 24.6% 24.6% 5.6% 23.5%	000000	0.04 1.01 0.31 0.80 0.05 0.87 0.81
rafrodshive Scientific Services hafrodshive Scientific Services caffordshive Scientific Services caffordshive Scientific Services hafrodshive Scientific Services androdshive Scientific Services	200; TEA in under 200; TEA in under	2018 2015 2015 2015 2016 2016 2018 2018 2018 2010 2018	SI # KS # 8 00 # KS # 00	Mancheses Cay Council Bay Council Maylekone Road Intercomparison Safetod Cay Council Safetod Cay Council Safetod Cay Council Intelapot Others Council Safetor Trend Dy Council	2 2 11 3 2 2 2 12 10	23 30 84 44 18 30 43 36 57	24 25 85 40 14 25 37 25 56	-4.7% 19.0% -0.7% 10.5% 24.6% 10.0% 15.6% 23.3% 2.7%	00000000	0.04 1.01 0.31 0.80 0.05 0.87 0.87 0.61 0.97

Table C 1 - Bias Adjustment for Staffordshire Scientific Services

** bit Casella Stangerboreau Vertas 1901 bureau Vertas Labortuse Gradio 505 10A in Hoaton *or Casella Seal/SMSSIC asella CPE/Bureau Vertas LaboRurofino/ use Environmental Scientific

Seope. Ton 2011 for Environmental Scientific Groups use ESG Glasgow. Yom 2011 for Harved Scienalis Services use ESG Didoor. You 2011 for SCCOTEC use ESG Didoor, as name changed mid year. You 2018 SCCOTEC use ESG Didoor, and Glasgov. Glasgov analysis lab moved to Didoormid You 2018 SCCOTEC environment an Didoor and Glasgov.

2018.

For Staffordshare CC SS/Staffordshire County Analyst use Staffordshire Scientific Services

For Statisticity and CC SIStatisticative County Analysis use Statisticative CC SIStatisticative For Bodycose Health Sciences and Clube Analysis CL aboratories use Exerce. For Romeinen MBC use South Yorkshire Labor. For Dundee CC use Tayside SS. For Laborative Scientific Services use Statisticative Scientific Services. For South Yorkshire & Caulty Samplers use South Yorkshire Labor. As of January 2010 sampler sodiu changed. A of April 2010 particle cap changed. Januarities France Onders with the Nationary constraints at the and of 2010 National Januarities France Onders with the National Science Constraints at the and of 2010 National Science Science Constraints and the service 2010 National Science Constraints and the service 2010 National Science Constraints at the service 2010 National Science Constraints and the service 2010 National Science Constraints at the service 2010 National Science Constraints at the service 2010 National Science Constraints and the service 2010 National Science Constraints and the service 2010 National Science Constraints at the service Constraints at the service 2010 National Science Constraints at the service Constrai

Table C 2 – Laboratory precision

Table 1: Laboratory summary performance for AIR NO2 PT rounds AR0019, 21, 22, 24, 25, 27, 28 and 30

The following table lists those UK laboratories undertaking LAQM activities that have participated in recent AIR NO₂ PT rounds and the percentage (%) of results submitted which were subsequently determined to be satisfactory based upon a z-score of < ± 2 as defined above.

AIR PT Round	AIR PT AR019	AIR PT AR021	AIR PT AR022	AJR PT AR024	AIR PT AR025	AJR PT AR027	AIR PT AR028	AIR PT AR030
Round conducted in the period	April – May 2017	July - August 2017	September – October 2017	January – February 2018	April – May 2018	July - August 2018	September - October 2018	January – February 2019
Aberdeen Scientific Services	100 %	100 %	100 %	100 %	100 %	100 %	100 %	75 %
Cardiff Scientific Services	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]
Edinburgh Scientific Services	100 %	100 %	100.%	100 %	100 %	100 %	100 %	100 %
SOCOTEC	100 % [1]	100 % [1]	100 % [1]	100 % [1]	100 % [1]	100 % [1]	100 % [1]	87.5%[1]
Exova (formerly Clyde Analytical)	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]
Glasgow Scientific Services	50 %	0%	100 %	100 %	100 %	50 %	100 %	100 %
Gradko international [1]	100.%[1]	100 % [1]	100 % [1]	100 % [1]	100 %	100 %	100 %	75.%
Kent Scientific Services	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]
Kirklees MBC	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]
Lambeth Scientific Services	NR [2]	NR [2]	100 %	NR [2]	NR [2]	NR [2]	25 %	50 %
Miton Keynes Council	75%	0%	75%	100 %	75%	100 %	100 %	100 %
Northampton Borough Council	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]	NR [3]
Somerset Scientific Services	100 %	100 %	75 %	100 %	100 %	100 %	100 %	100 %
South Yorkshire Air Quality Samplers	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
Staffordshire County Council	100 %	100 %	100 %	50 %	100 %	100 %	100 %	100 %
Tayside Scientific Services (formerly Dundee CC)	NR [2]	100 %	NR [2]	100 %	NR [2]	100 %	NR [2]	100 %
West Yorkshire Analytical Services	100 %	100 %	100 %	50 %	75 %	100 %	100 %	100 %

Services [1] Participant subscribed to two sets of test results (2 x 4 test samples) in each AIR PT round. [2] NR No results reported [3] Northampton Borough Council, Kent Scientific Services, Cardiff Scientific Services, Kirklees MBC and Exova (formerly Clyde Analytical) no longer carry out NO2 diffusion tube monitoring and therefore did not submit results.

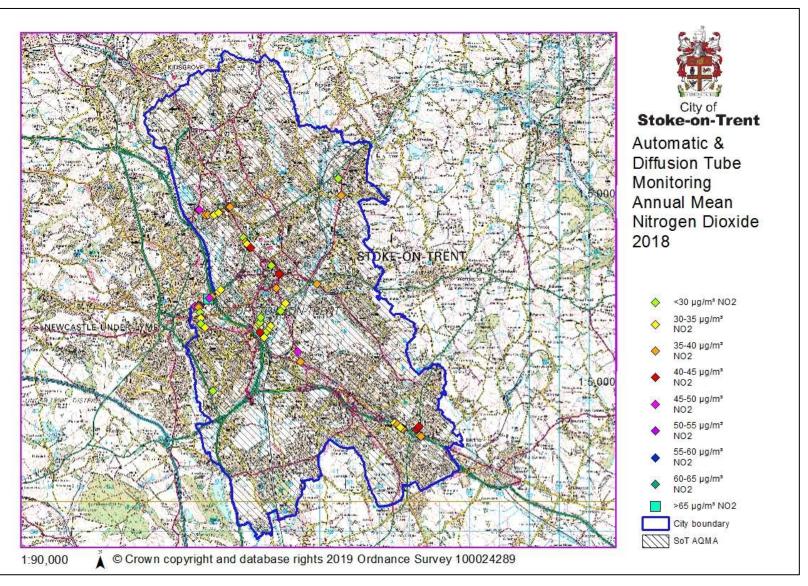
NO2 PT Summary - AIR PT Rounds AR019, 21, 22, 24, 25, 27, 28 and 30

Page 5 of 5

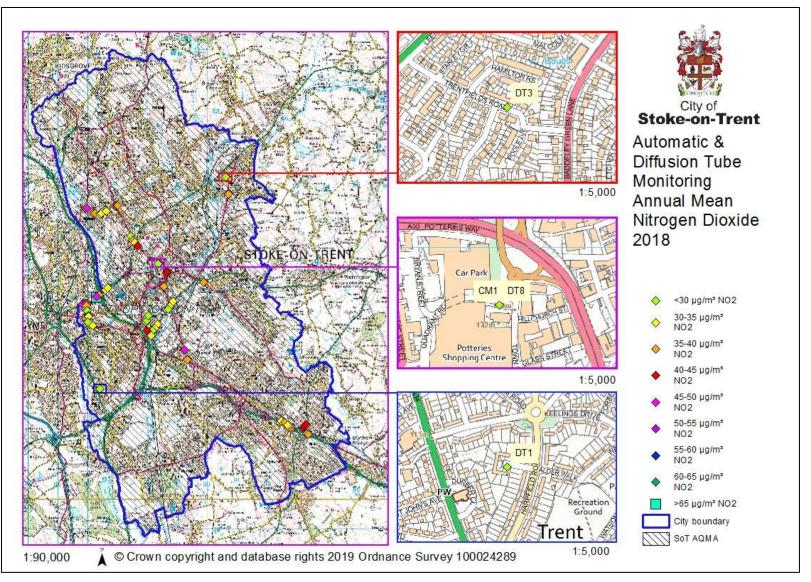
Table C 3 - Distance Correction Calculations

B U R E VER IT	AU AS	er data in	to the pink c	ells:		_
	Distanc	ce (m)	NO ₂ Annual M	lean Concent	ration (µg/m³)	
Site Name/ID	Monitoring Site to Kerb	Receptor to Kerb	Background	Monitored at Site	Predicted at Receptor	Comment
CM1	9.6	4.9	17.3	23.0	24.4	
CM2	4.6	5.0	17.3	33.0	32.6	
CM5	4.5	9.6	17.3	55.0	46.7	Predicted concentration at Receptor above AQS objective.
CM6	3.3	14.3	17.3	53.0	39.1	Predicted concentration at Receptor within 10% the AQS objective.
DT2	2.0	2.1	17.3	39.1	38.9	Predicted concentration at Receptor within 10% the AQS objective.
DT4	5.0	6.0	17.3	31.9	31.1	

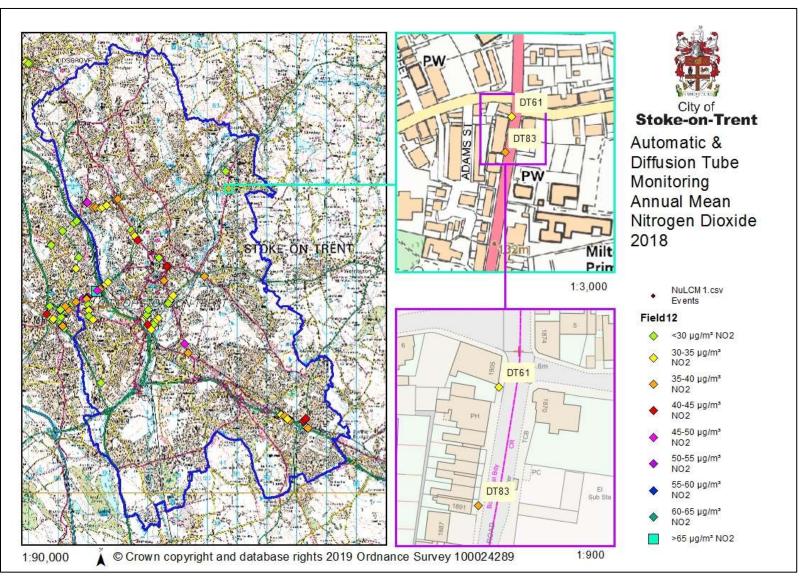
DT8	9.6	4.9	17.3	24.6	26.4	
DT17	1.8	2.6	17.3	72.5	<u>67.9</u>	Predicted concentration at Receptor above AQS objective.
DT32	3.2	6.0	17.3	34.4	31.6	
DT51	15.0	17.3	17.3	38.8	37.4	Predicted concentration at Receptor within 10% the AQS objective. Warning: your monitor is more than 10m further from the kerb than your receptor - treat result with caution.
DT52	2.6	4.5	17.3	47.9	43.7	Predicted concentration at Receptor above AQS objective.
DT56	4.5	9.6	17.3	49.5	42.4	Predicted concentration at Receptor above AQS objective.
DT64	1.6	2.6	17.3	36.5	34.4	

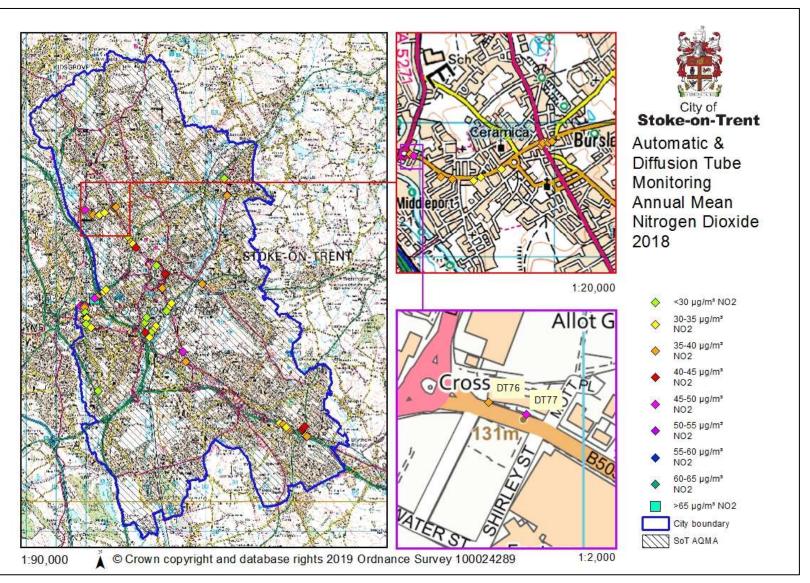

DT67	2.1	4.2	17.3	48.6	43.5	Predicted concentration at Receptor above AQS objective.
DT72	2.4	4.4	17.3	35.0	32.4	
DT74	1.9	3.5	17.3	43.6	39.9	Predicted concentration at Receptor within 10% the AQS objective.
DT75	2.8	9.7	17.3	37.6	31.2	
DT76	1.7	2.6	17.3	36.9	35.0	
DT77	1.9	6.3	17.3	47.7	39.3	Predicted concentration at Receptor within 10% the AQS objective.
DT81	2.0	3.9	17.3	34.0	31.4	
DT83	1.9	4.0	17.3	36.6	33.3	

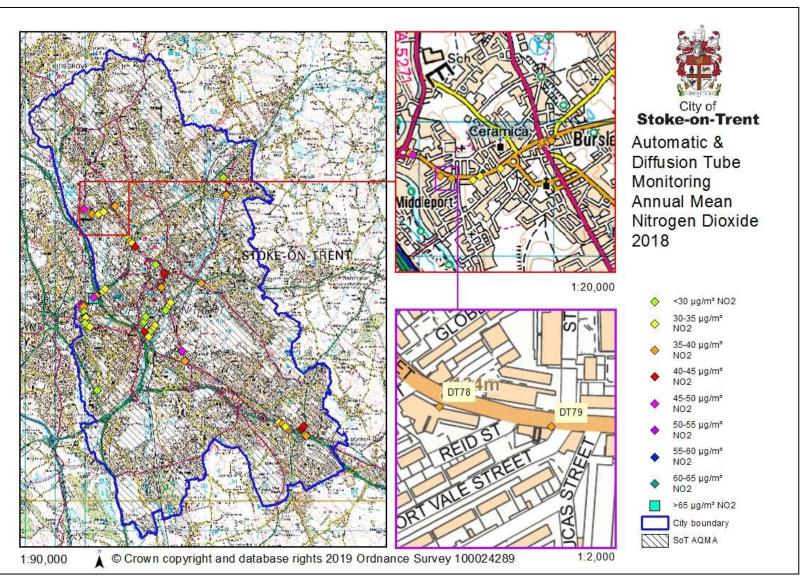
DT84	3.1	3.6	17.3	36.4	35.7	
DT88	1.5	3.4	17.3	30.4	28.0	
DT89	1.8	12.4	17.3	36.9	28.3	
DT91	2.5	4.9	17.3	43.4	39.1	Predicted concentration at Receptor within 10% the AQS objective.
DT93	3.0	5.3	17.3	29.6	27.8	
DT94	1.8	2.7	17.3	31.3	30.0	
DT95	2.5	4.7	17.3	30.7	28.6	
DT96	2.0	3.7	17.3	29.3	27.6	

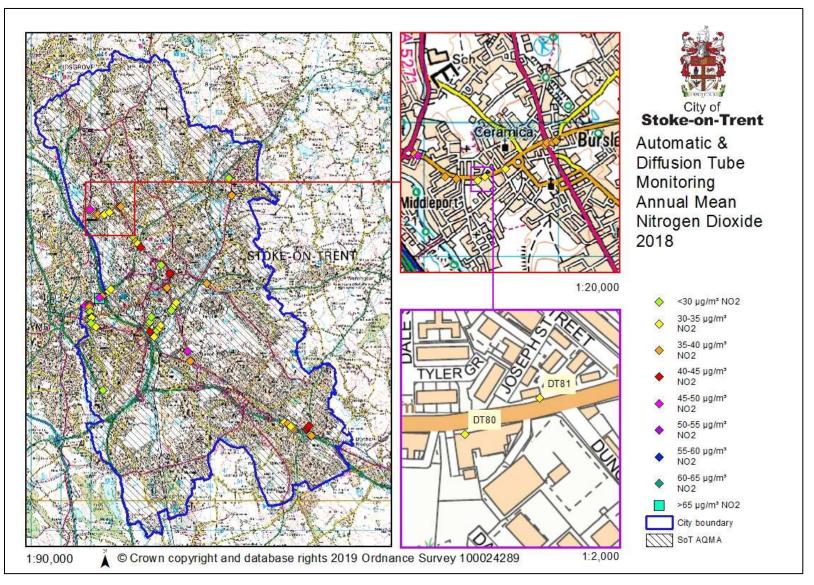

DT98	2.4	4.6	17.3	27.1	25.5	

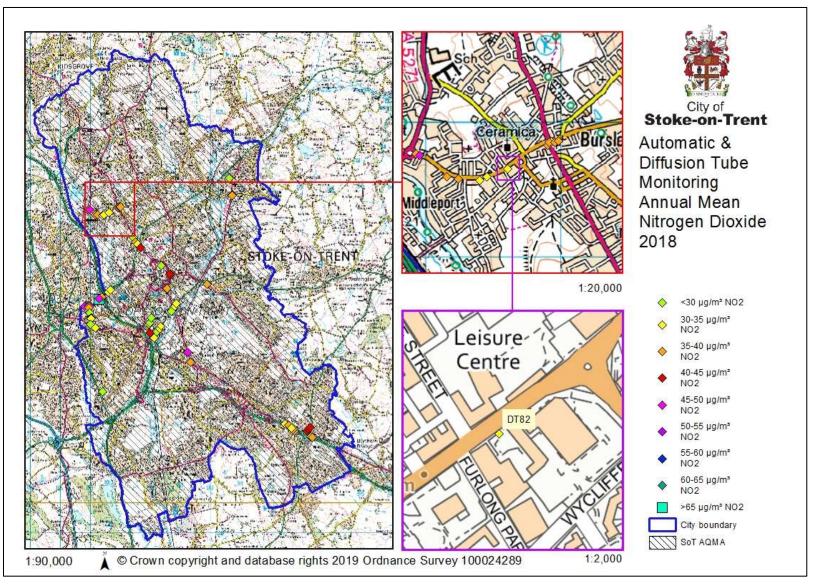
Appendix D: Map(s) of Monitoring Locations and AQMAs

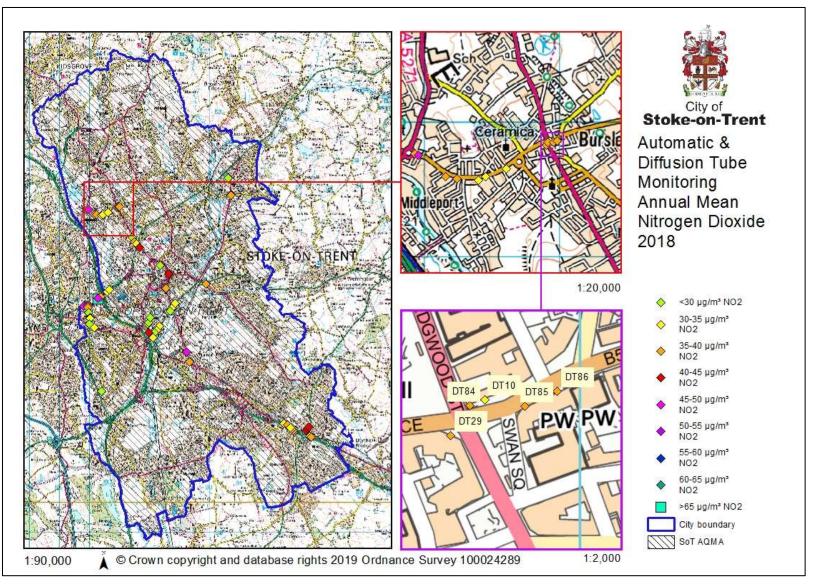

Figure D. 1 – All NO₂ monitoring

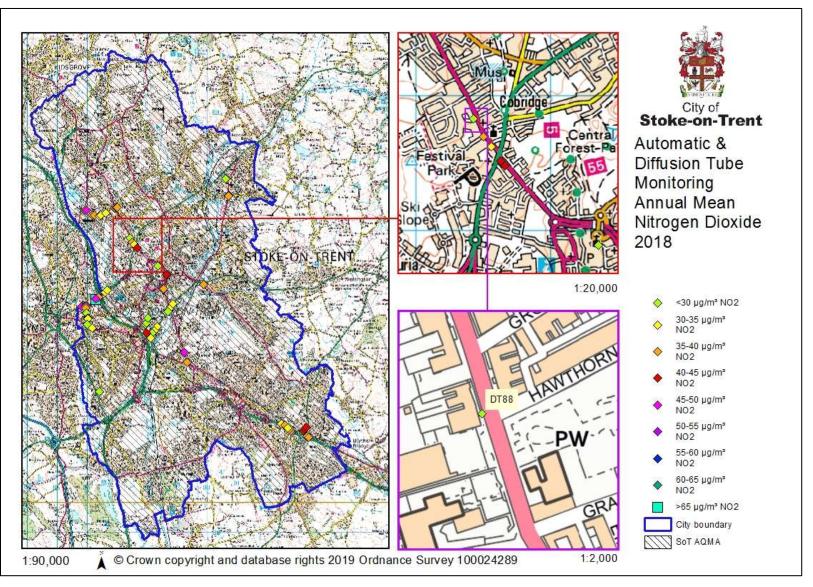


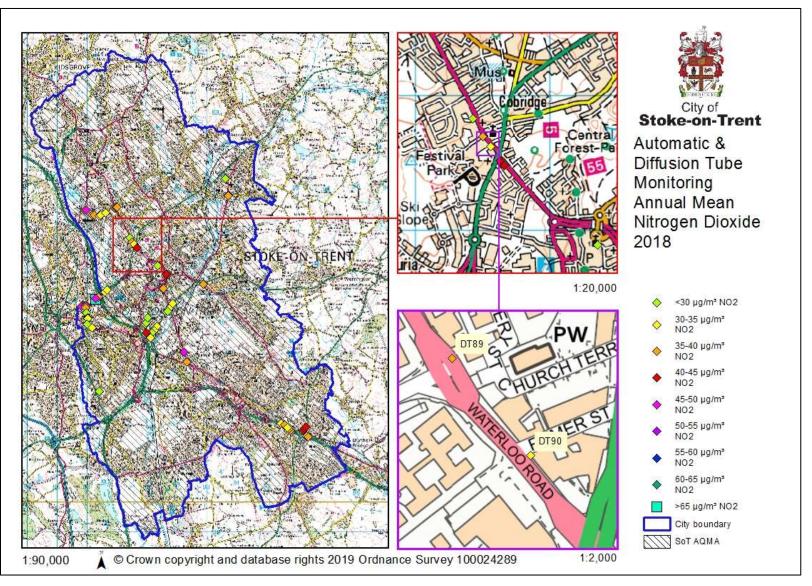

Figure D. 3 – Milton NO₂ monitoring

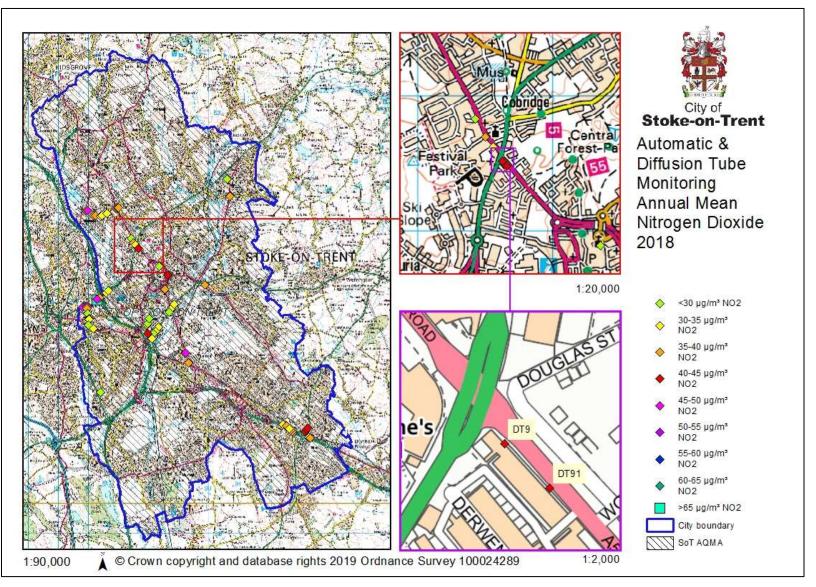


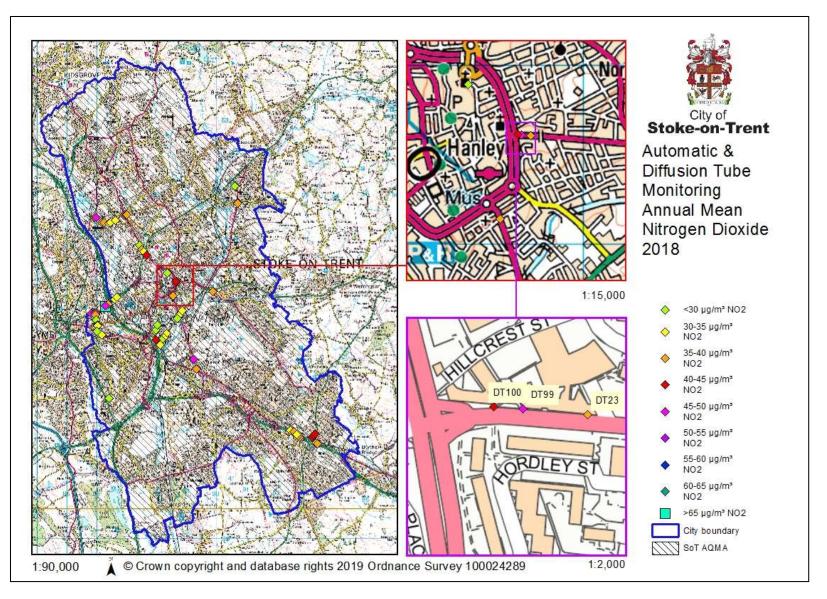


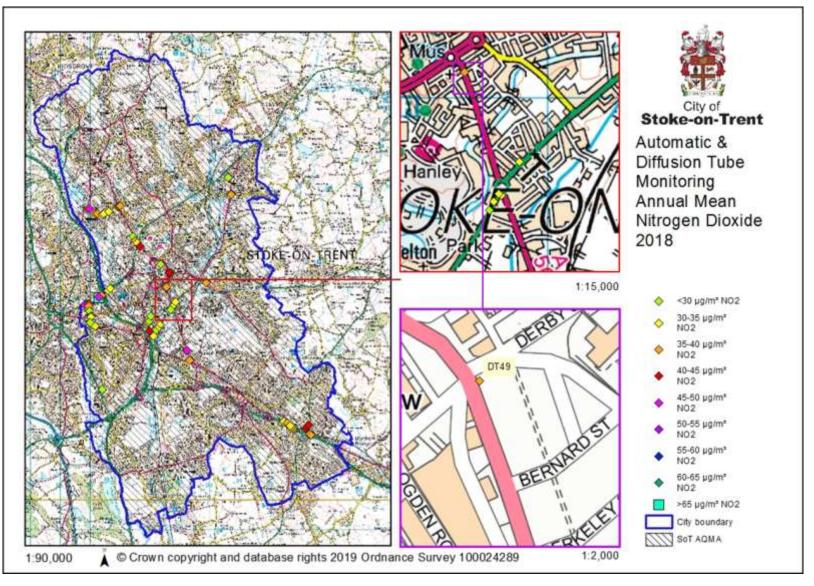


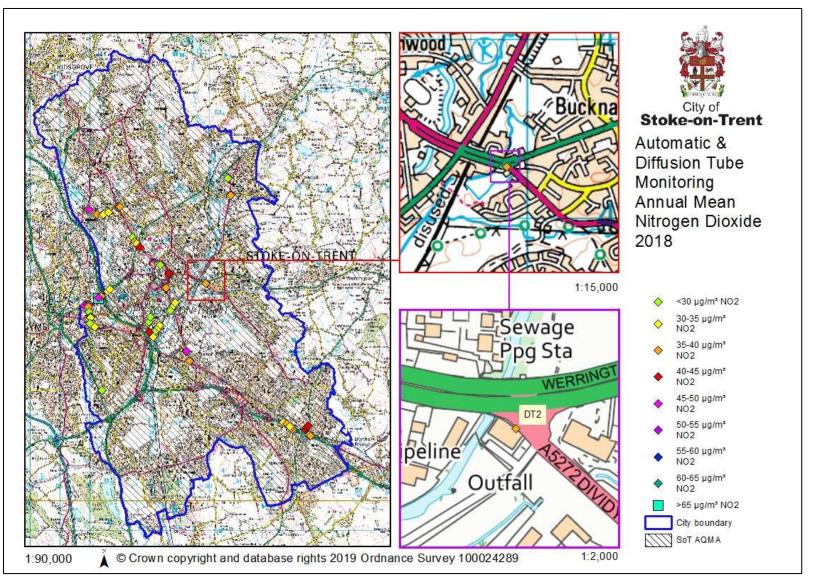





Figure D. 9 Cobridge 1 NO₂ monitoring


Figure D. 10 Cobridge 2 NO₂ monitoring


Figure D. 11 Cobridge 3 NO₂ monitoring


Figure D. 12 Hanley 1 NO₂ monitoring

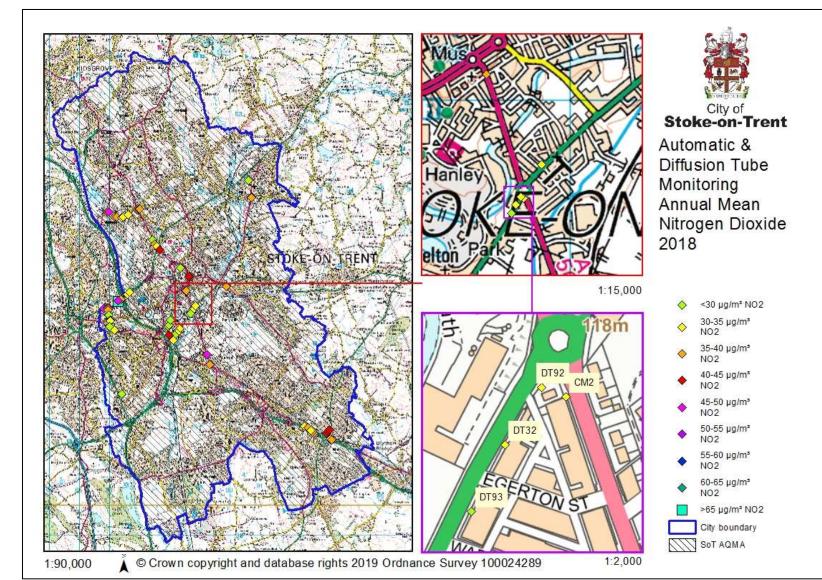


Figure D. 13 Hanley 2 NO₂ monitoring

Figure D. 14 Bucknall NO₂ monitoring

Figure D. 15 Leek Road/Victoria Road NO₂ monitoring

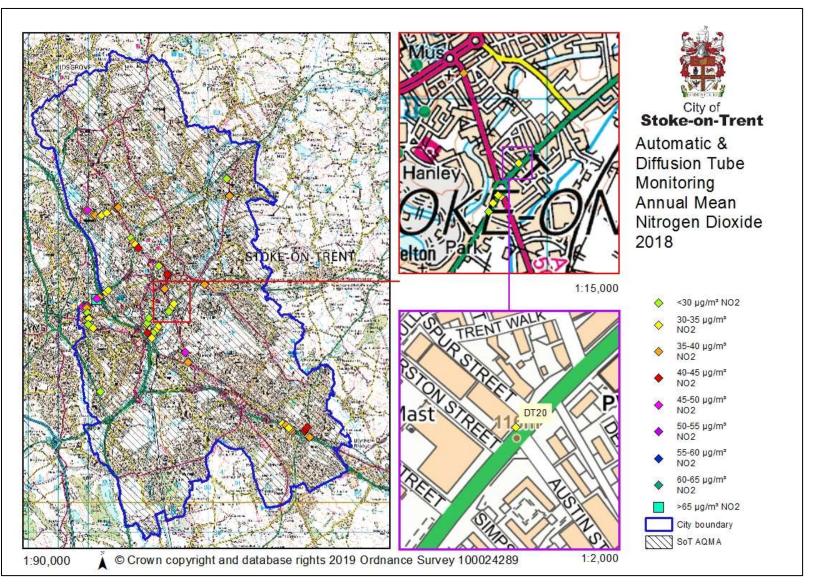
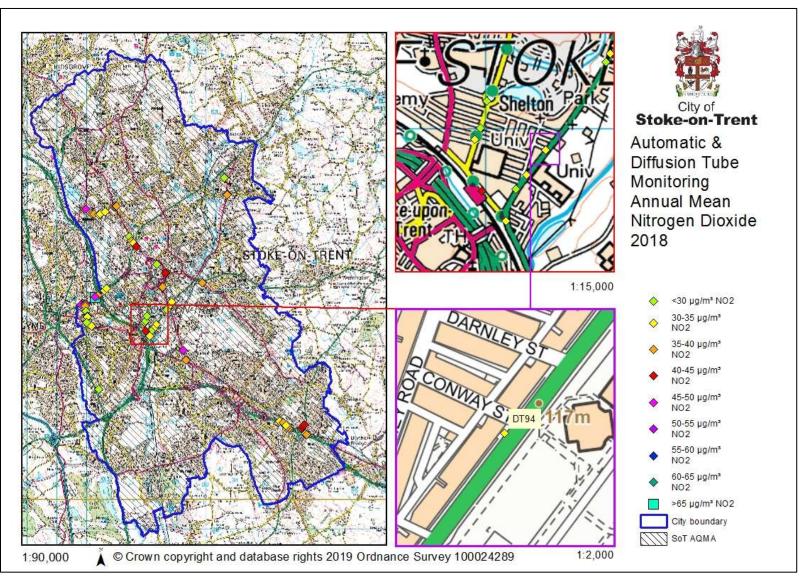
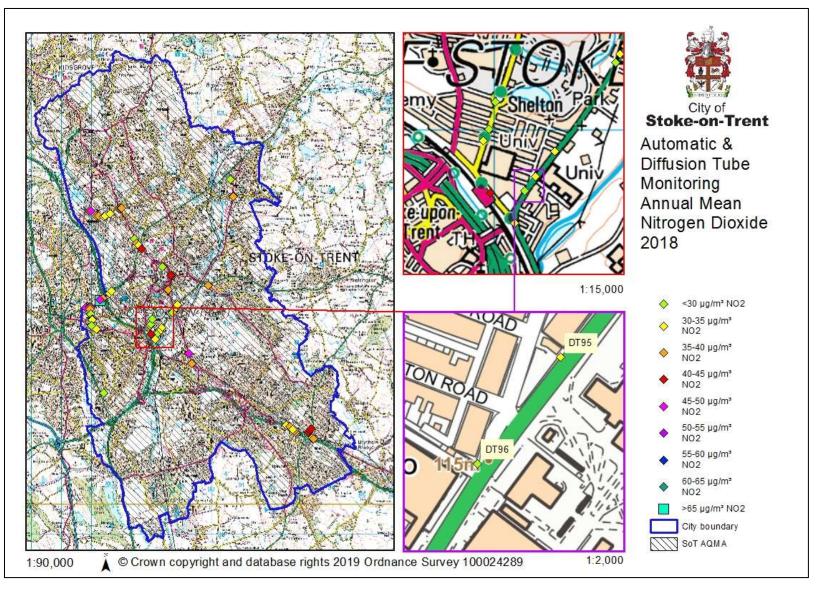
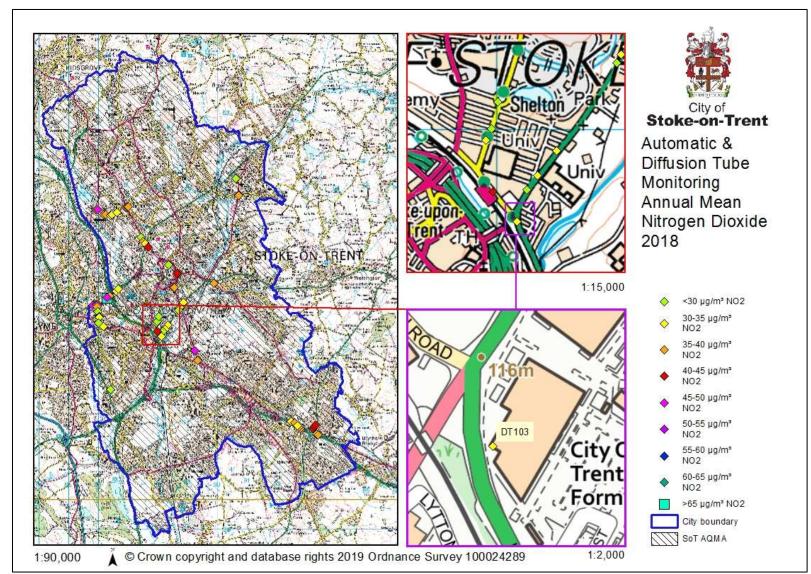
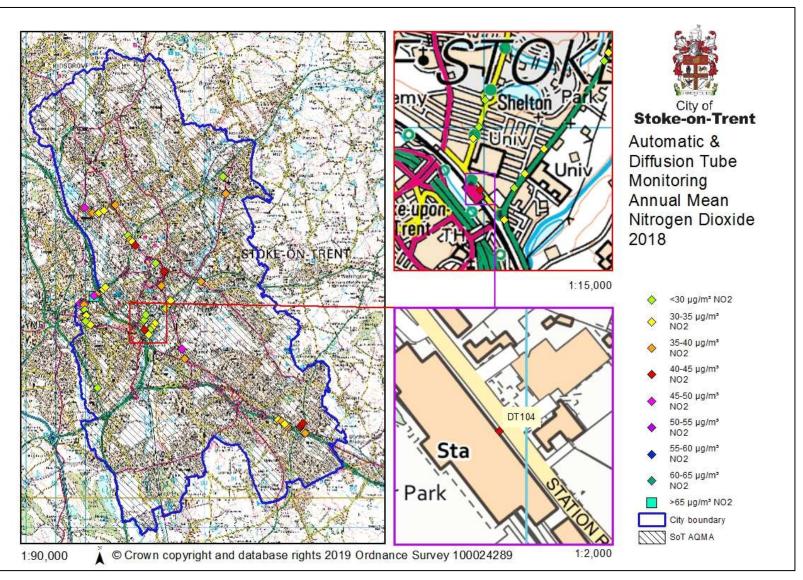


Figure D. 17 Leek Road 3 NO₂ monitoring


Figure D. 18 Leek Road 4 NO₂ monitoring

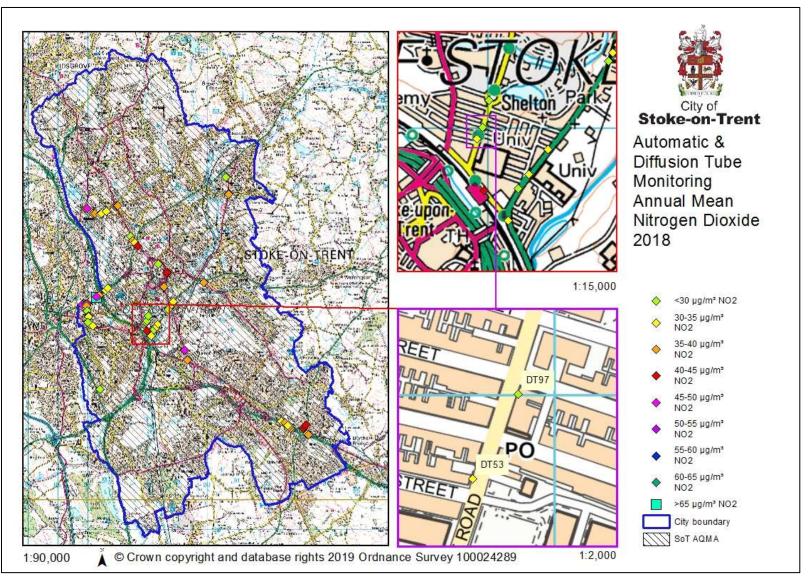


Figure D. 19 Leek Road Sixth Form College NO₂ monitoring

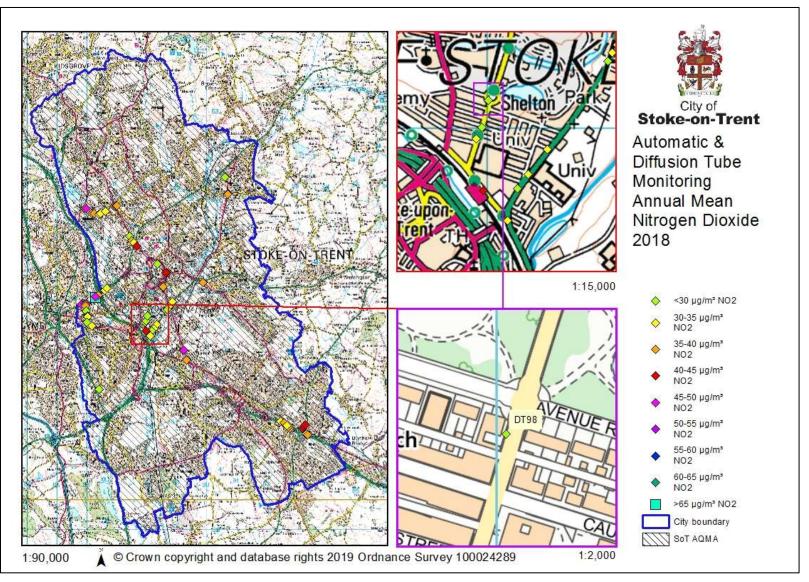


Figure D. 23 A53 East NO₂ monitoring

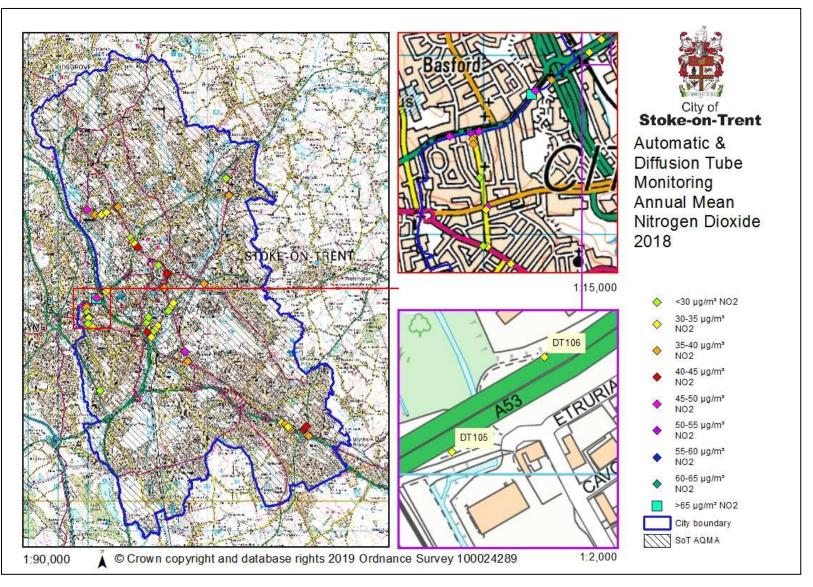
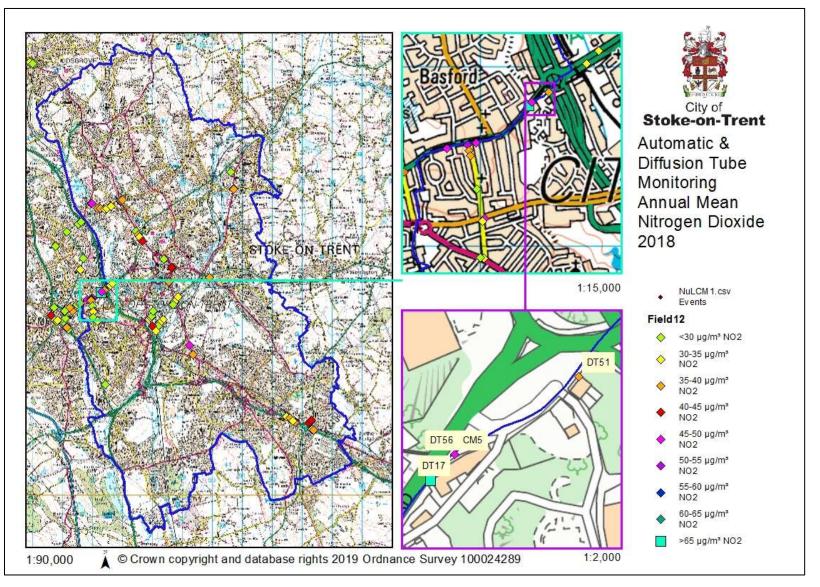



Figure D. 24 A53 West 1 NO₂ monitoring

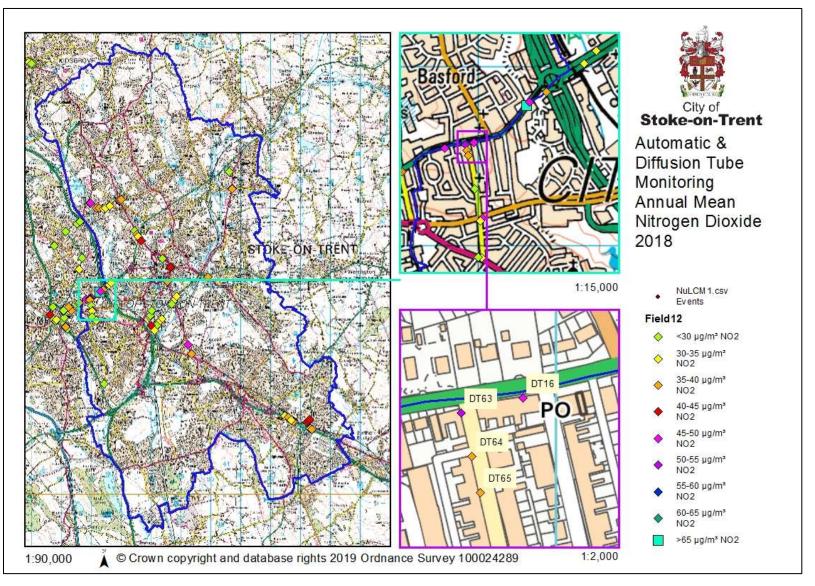


Figure D. 26 A53 West 3 NO₂ monitoring

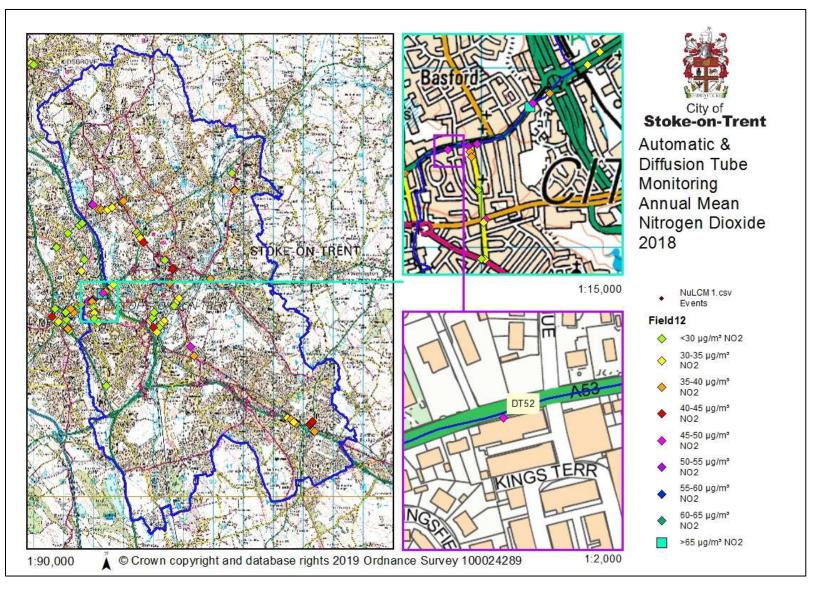
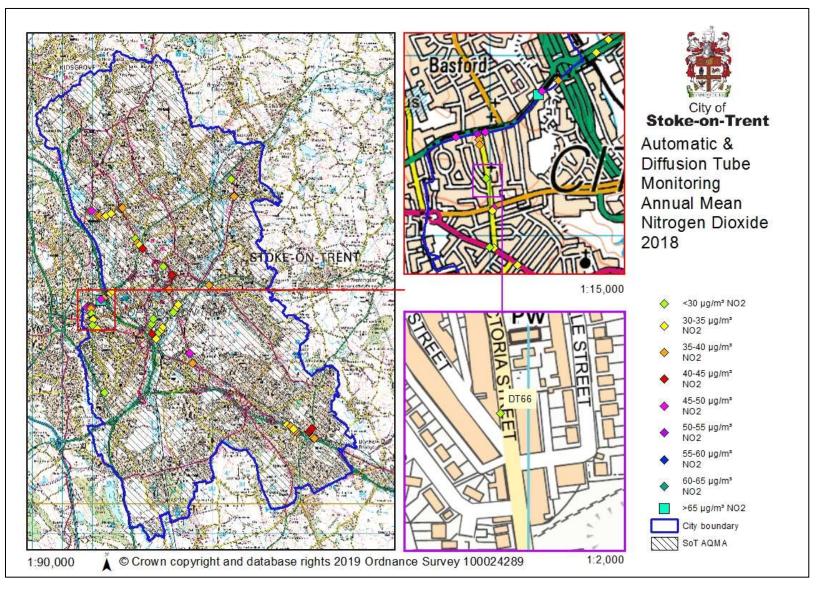
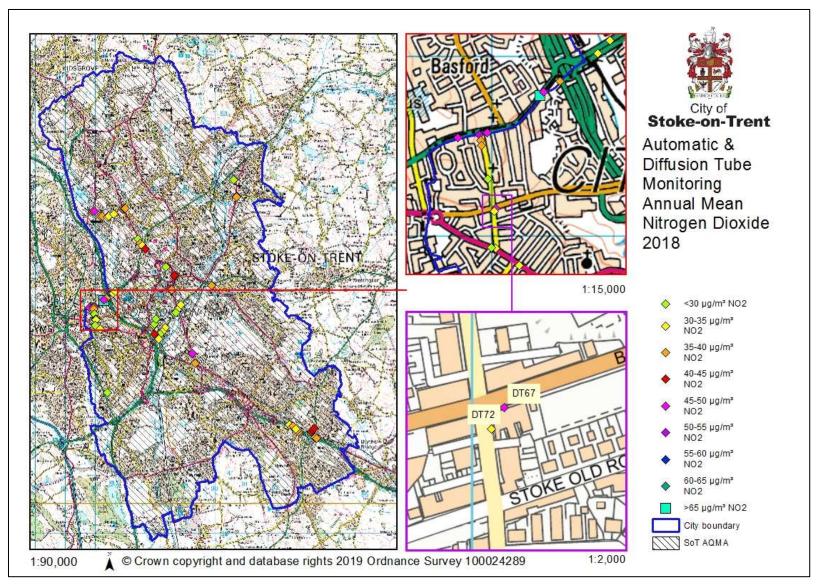
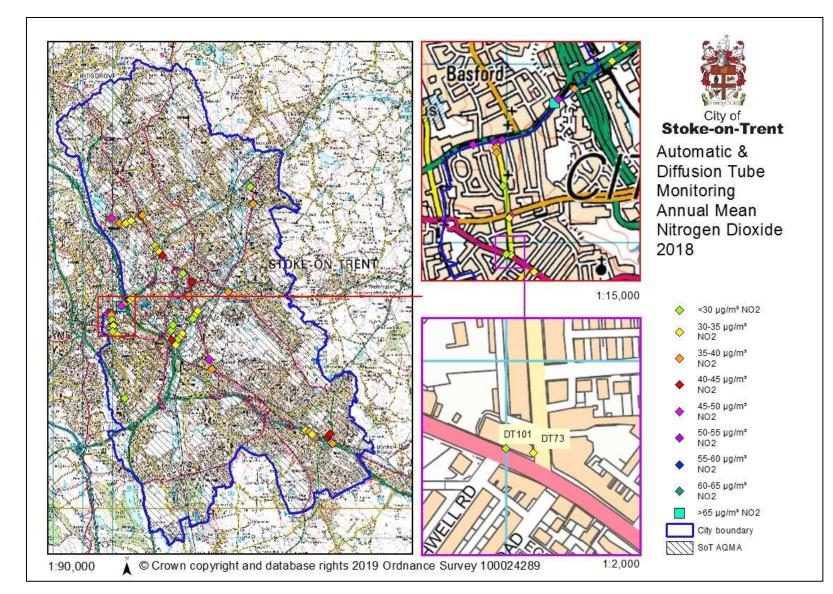





Figure D. 27 Victoria Street 2 NO₂ monitoring

Figure D. 28 Victoria Street 3/Shelton New Road NO₂ monitoring

Figure D. 29 Victoria Street 4/Hartshill Road NO₂ monitoring

Figure D. 30 Hartshill Road 2 NO₂ monitoring

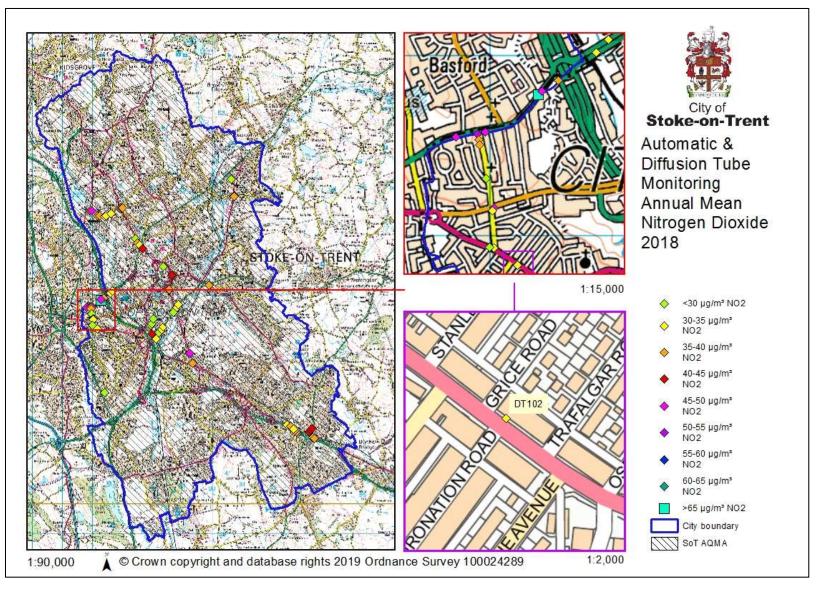
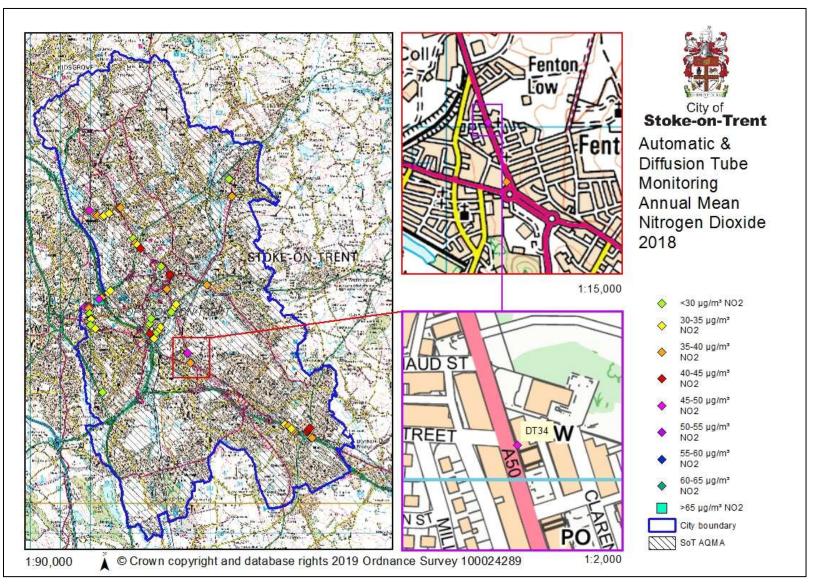
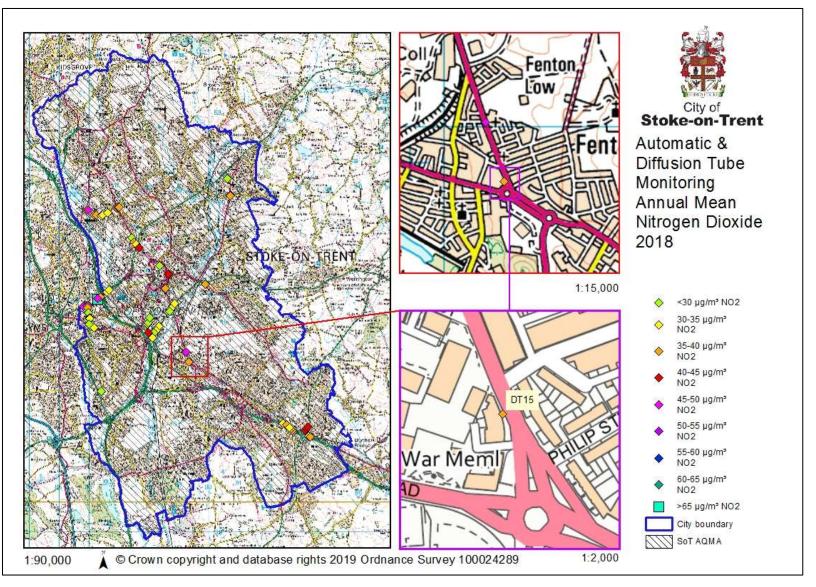
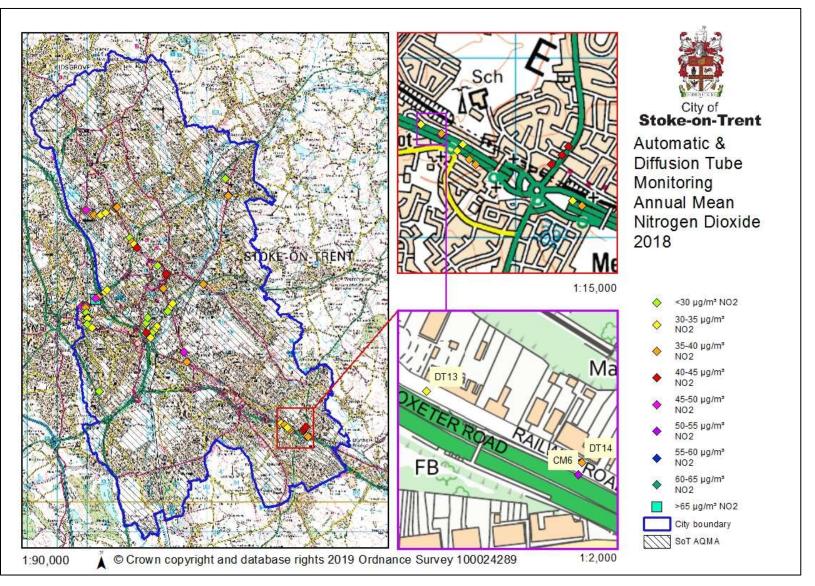
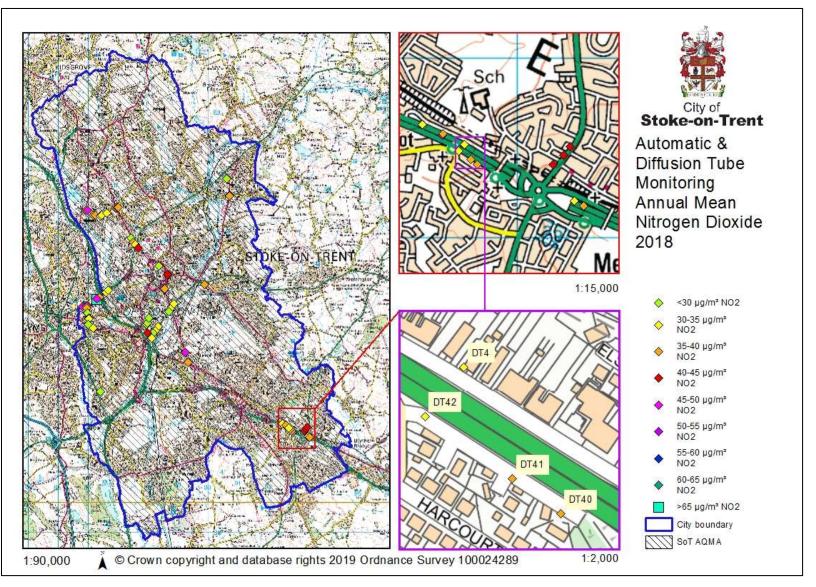
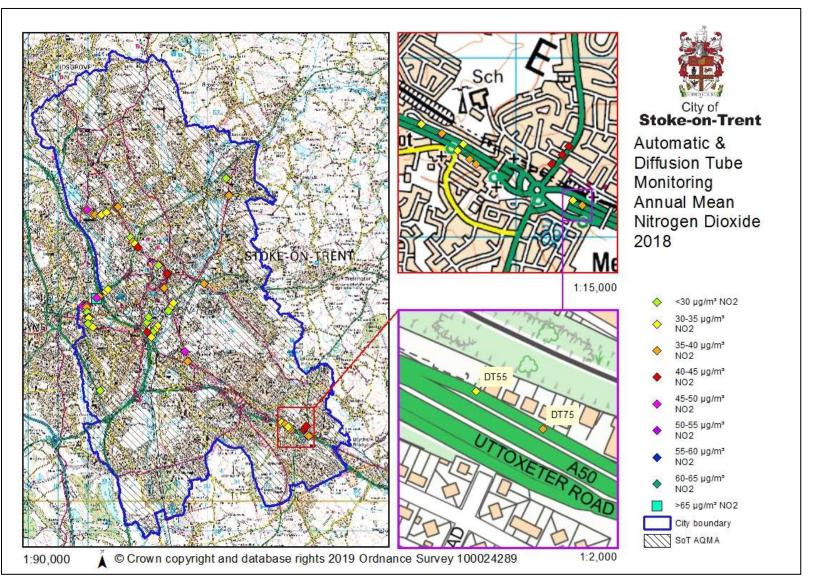


Figure D. 31 Victoria Road NO₂ monitoring


Figure D. 32 Victoria Place NO₂ monitoring


Figure D. 33 Meir A50 1 NO₂ monitoring

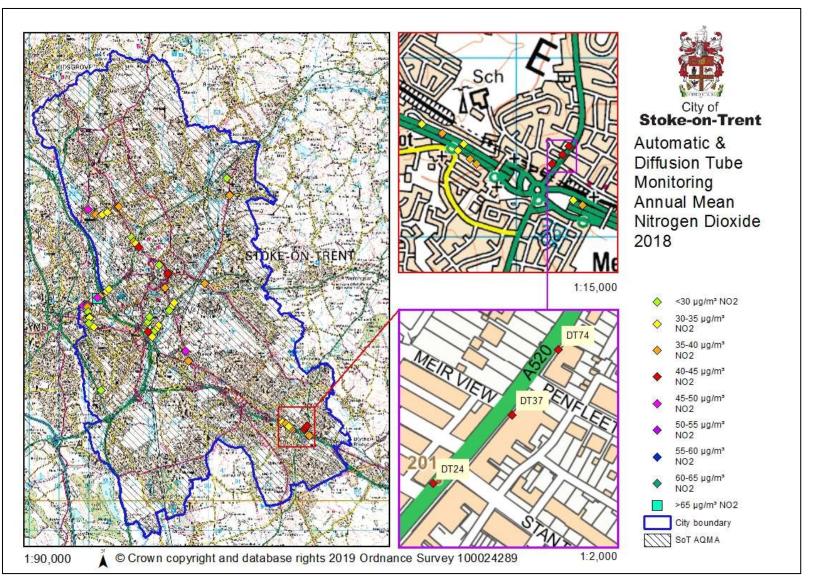

Figure D. 34 Meir A50 2 NO₂ monitoring

Figure D. 35 Meir A50 3 NO₂ monitoring

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective ¹⁰	
	Concentration	Measured as
Nitrogen Dioxide	200 μg/m ³ not to be exceeded more than 18 times a year	1-hour mean
(NO ₂)	40 μg/m ³	Annual mean
Particulate Matter (PM ₁₀)	50 μg/m ³ , not to be exceeded more than 35 times a year	24-hour mean
	40 μg/m ³	Annual mean
Sulphur Dioxide (SO ₂)	350 μg/m ³ , not to be exceeded more than 24 times a year	1-hour mean
	125 μg/m ³ , not to be exceeded more than 3 times a year	24-hour mean
	266 μg/m ³ , not to be exceeded more than 35 times a year	15-minute mean

¹⁰ The units are in microgrammes of pollutant per cubic metre of air (μ g/m³).

Glossary of Terms

Abbreviation	Description	
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'	
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives	
ASR	Air quality Annual Status Report	
Defra	Department for Environment, Food and Rural Affairs	
JAQU	Joint Air Quality Unit	
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England	
EU	European Union	
FDMS	Filter Dynamics Measurement System	
LAQM	Local Air Quality Management	
NO ₂	Nitrogen Dioxide	
NO _x	Nitrogen Oxides	
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10µm (micrometres or microns) or less	
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less	
QA/QC	Quality Assurance and Quality Control	
SO ₂	Sulphur Dioxide	
MD	Ministerial Direction	